Polymer Composites for Electrical Engineering
Здесь есть возможность читать онлайн «Polymer Composites for Electrical Engineering» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Polymer Composites for Electrical Engineering
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 100
- 1
- 2
- 3
- 4
- 5
Polymer Composites for Electrical Engineering: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Polymer Composites for Electrical Engineering»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Polymer Composites for Electrical Engineering
Polymer Composites for Electrical Engineering
Polymer Composites for Electrical Engineering — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Polymer Composites for Electrical Engineering», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Acknowledgments
This work is financially supported by the National Natural Science Foundation of China (51873126 and 51721091).
References
1 1 Xu, B., Li, P., and Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Applied Energy 160: 286–307.
2 2 Chu, S. and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature 488: 294–303.
3 3 Sundararajan, S., Samui, A.B., and Kulkarni, P.S. (2017). Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. Journal of Materials Chemistry A 5: 18379–18396.
4 4 Amaral, C., Vicente, R., Marques, P.A.A.P., and Barros‐Timmons, A. (2017). Phase change materials and carbon nanostructures for thermal energy storage: a literature review. Renewable and Sustainable Energy Reviews 79: 1212–1228.
5 5 Sharma, S.D., Kitano, H., and Sagara, K. (2004). Phase change materials for low temperature solar thermal applications. Research Reports of the Faculty of Engineering, Mie University 29: 31–64.
6 6 Shchukina, E.M., Graham, M., Zheng, Z., and Shchukin, D.G. (2018). Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chemical Society Reviews 47: 4156–4175.
7 7 Pielichowska, K. and Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Materials Science 65: 67–123.
8 8 Wu, S., Yan, T., Kuai, Z., and Pan, W. (2020). Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Materials 25: 251–295.
9 9 Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13: 318–345.
10 10 Zhang, P., Xiao, X., and Ma, Z.W. (2016). A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Applied Energy 165: 472–510.
11 11 Hu, H. (2020). Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Composites Part B: Engineering 195: 108094.
12 12 Sharma, R.K., Ganesan, P., Tyagi, V.V. et al. (2015). Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management 95: 193–228.
13 13 Umair, M.M., Zhang, Y., Iqbal, K. et al. (2019). Novel strategies and supporting materials applied to shape‐stabilize organic phase change materials for thermal energy storage – a review. Applied Energy 235: 846–873.
14 14 Qi, G.‐Q., Liang, C.‐L., Bao, R.‐Y. et al. (2014). Polyethylene glycol based shape‐stabilized phase change material for thermal energy storage with ultra‐low content of graphene oxide. Solar Energy Materials and Solar Cells 123: 171–177.
15 15 Ye, S., Zhang, Q., Hu, D., and Feng, J. (2015). Core–shell‐like structured graphene aerogel encapsulating paraffin: shape‐stable phase change material for thermal energy storage. Journal of Materials Chemistry A 3: 4018–4025.
16 16 Zhao, Y., Min, X., Huang, Z. et al. (2018). Honeycomb‐like structured biological porous carbon encapsulating PEG: a shape‐stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy and Buildings 158: 1049–1062.
17 17 Yang, J., Tang, L.‐S., Bao, R.‐Y. et al. (2018). Hybrid network structure of boron nitride and graphene oxide in shape‐stabilized composite phase change materials with enhanced thermal conductivity and light‐to‐electric energy conversion capability. Solar Energy Materials and Solar Cells 174: 56–64.
18 18 Shi, J.‐N., Ger, M.‐D., Liu, Y.‐M. et al. (2013). Improving the thermal conductivity and shape‐stabilization of phase change materials using nanographite additives. Carbon 51: 365–372.
19 19 Jamekhorshid, A., Sadrameli, S.M., and Farid, M. (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews 31: 531–542.
20 20 Aftab, W., Huang, X., Wu, W. et al. (2018). Nanoconfined phase change materials for thermal energy applications. Energy & Environmental Science 11: 1392–1424.
21 21 Liu, C., Rao, Z., Zhao, J. et al. (2015). Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy 13: 814–826.
22 22 Milián, Y.E., Gutiérrez, A., Grágeda, M., and Ushak, S. (2017). A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews 73: 983–999.
23 23 Giro‐Paloma, J., Martínez, M., Cabeza, L.F., and Fernández, A.I. (2016). Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renewable and Sustainable Energy Reviews 53: 1059–1075.
24 24 Jacob, R. and Bruno, F. (2015). Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews 48: 79–87.
25 25 Zhang, G.H., Bon, S.A.F., and Zhao, C.Y. (2012). Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Solar Energy 86: 1149–1154.
26 26 De Castro, P.F., Ahmed, A., and Shchukin, D.G. (2016). Confined‐volume effect on the thermal properties of encapsulated phase change materials for thermal energy storage. Chemistry 22: 4389–4394.
27 27 Du, X., Fang, Y., Cheng, X. et al. (2018). Fabrication and characterization of flame‐retardant nanoencapsulated n‐octadecane with melamine–formaldehyde shell for thermal energy storage. ACS Sustainable Chemistry & Engineering 6: 15541–15549.
28 28 He, F., Wang, X., and Wu, D. (2014). New approach for sol–gel synthesis of microencapsulated n‐octadecane phase change material with silica wall using sodium silicate precursor. Energy 67: 223–233.
29 29 Geng, L., Wang, S., Wang, T., and Luo, R. (2016). Facile synthesis and thermal properties of nanoencapsulated n‐dodecanol with SiO2 shell as shape‐formed thermal energy storage material. Energy & Fuels 30: 6153–6160.
30 30 Liu, H., Wang, X., and Wu, D. (2017). Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustainable Chemistry & Engineering 5: 4906–4915.
31 31 Wang, T., Wang, S., Luo, R. et al. (2016). Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Applied Energy 171: 113–119.
32 32 Li, M., Liu, J., and Shi, J. (2018). Synthesis and properties of phase change microcapsule with SiO2‐TiO2 hybrid shell. Solar Energy 167: 158–164.
33 33 Zhao, A., An, J., Yang, J., and Yang, E.‐H. (2018). Microencapsulated phase change materials with composite titania‐polyurea (TiO2‐PUA) shell. Applied Energy 215: 468–478.
34 34 Wang, H., Zhao, L., Chen, L. et al. (2017). Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids 111: 207–213.
35 35 Wang, H., Zhao, L., Song, G. et al. (2018). Organic‐inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC‐stabilized pickering emulsion polymerization. Solar Energy Materials and Solar Cells 175: 102–110.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Polymer Composites for Electrical Engineering»
Представляем Вашему вниманию похожие книги на «Polymer Composites for Electrical Engineering» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Polymer Composites for Electrical Engineering» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.