17 Kapitel 16Abb. 16.1 Der Fluss von Teilchen gegen einen Konzentrationsgradienten. Das erste...Abb. 16.2 Die Viskosität einer Flüssigkeit entsteht durch den Transport des Impu...Abb. 16.3 Ein Molekül erreicht die rechte Wand genau dann innerhalb eines Zeitin...Abb. 16.4 Bei der Berechnung der Diffusionsgeschwindigkeit in einem Gas betracht...Abb. 16.5 Eine Komplikation, die wir in unserer einfachen Betrachtung ignoriert ...Abb. 16.6 Zur Berechnung der Viskosität eines Gases betrachten wir die x ‐Kompone...Abb. 16.7 Experimentell bestimmte Temperaturabhängigkeit der Viskosität von Wass...Abb. 16.8 Eine stark vereinfachende schematische Darstellung, die den Mechanismu...Abb. 16.9 Bei der Berechnung des Stroms betrachten wir alle Ionen innerhalb eine...Abb. A1 Schema einer Anordnung für das Patch‐Clamp‐Verfahren zur Messung von Ion...Abb. A2 Skizze des Querschnitts eines K +‐selektiven Kanalproteins, das die Zellm...Abb. 16.10 Die thermodynamische Kraft ist proportional zu −∂ ln c /∂ x = −(1/ c )∂ c /...Abb. 16.11 Der Nettofluss in ein Gebiet ist die Differenz des aus einem Gebiet g...Abb. 16.12 Die Natur ist bestrebt, Verwerfungen in Verteilungen auszugleichen: W...Abb. 16.13 Die beiden in Illustration 16.11 beschriebenen Verteilungen: (a) line...Abb. 16.14 Die Konzentrationsprofile über einer Ebene, aus der ein gelöster Stof...Abb. 16.15 Der von Teilchen mit D = 5 × 10 −10m 2s −1zurückgelegte quadratisch g...
18 Kapitel 17Abb. 17.1 Experimentelle Anordnung für die Strömungsmethode zur Untersuchung von...Abb. 17.2 Bei der Stopped-Flow-Methode werden die Reagenzien durch die Spritzdüs...Abb. 17.3 Eine experimentelle Anordnung für die zeitaufgelöste Absorptionsspektr...Abb. 17.4 Zur Definition der (momentanen) Geschwindigkeit als Steigung der Tange...Abb. 17.5 Grafische Analyse der Daten aus Beispiel 17.2. (a) Auftragungen zur Be...Abb. 17.6 Der lineare Verbrauch des Reaktanten bei einer Reaktion nullter Ordnun...Abb. 17.7 Exponentielle Abnahme der Reaktantenkonzentration in einer Reaktion er...Abb. 17.8 Bestimmung der Geschwindigkeitskonstante einer Reaktion erster Ordnung...Abb. 17.9 Zeitlicher Verlauf der Konzentration eines Reaktanten in einer Reaktio...Abb. 17.10 Annäherung der Konzentrationen an ihre Gleichgewichtswerte gemäß Gl. ...Abb. 17.11 Relaxation eines Reaktionsgemischs in eine neue Gleichgewichtszusamme...Abb. 17.12 Die Auftragung von
gegen
ergibt eine Gerade, wenn das Verhalten...Abb. 17.13 Arrhenius-Auftragung der Daten aus Beispiel 17.4.Abb. 17.14 Profil der potenziellen Energie einer exothermen Reaktion. Die Höhe d...Abb. 17.15 Die gleichförmig verteilten Energieniveaus des in Herleitung 17.5 bes...Abb. 17.16 Ein Katalysator eröffnet einen alternativen Reaktionsweg mit einer ni...Abb. 17.17 Die Konzentrationen von A, I und P in der Folgereaktion A → I → P. Di...Abb. 17.18 Das Prinzip der Quasistationarität: Man nimmt an, dass die Konzentrat...Abb. 17.19 Vergleich des exakten Konzentrationsverlaufs bei einer Folgereaktion ...Abb. 17.20 Schematische Darstellung verschiedener Mechanismen; die dicken Pfeile...Abb. 17.21 Reaktionsprofil für einen Mechanismus, dessen erster Schritt geschwin...Abb. 17.22 Bei der Diskussion einer Reaktion mit vorgelagertem Gleichgewicht sin...Abb. 17.23 Schematische Darstellung des Lindemann-Hinshelwood-Mechanismus unimol...Abb. 17.24 Bei der schrittweisen Polymerisation können zwei beliebige Monomere (...Abb. 17.25 Bei einer Kettenpolymerisation lagern sich fortgesetzt Monomere (grün...Abb. 17.26 Die mittlere Kettenlänge eines Polymers als Funktion des Bruchteils p ...Abb. 17.27 Ein Katalysator stellt einen alternativen Reaktionsweg mit geringerer...Abb. 17.28 Zwei Modelle zur Erklärung der Bindung eines Substrats an das aktive ...Abb. 17.29 Die Abhängigkeit der Geschwindigkeit einer enzymkatalysierten Reaktio...Abb. 17.30 Ein Lineweaver-Burk-Diagramm zur Analyse einer enzymkatalysierten Rea...Abb. 17.31 Lineweaver-Burk-Auftragung der Daten aus Beispiel 17.9.Abb. 17.32 Ein Stern-Volmer-Diagramm und die Interpretation der Steigung als Ges...Abb. 17.33 Stern-Volmer-Auftragung der Daten aus Beispiel 17.11.Abb. 17.34 Nach der Förster-Theorie erreicht die Geschwindigkeit der Energieüber...
19 Kapitel 18Abb. 18.1 Der Stoßquerschnitt zweier Moleküle kann als die Fläche um das Molekül...Abb. 18.2 Skizze zur Berechnung des Zusammenhangs zwischen dem Stoßquerschnitt u...Abb. 18.3 Die Variation des reaktiven Stoßquerschnitts mit der Energie gemäß Gl....Abb. 18.4 Der Stoßquerschnitt ist die Trefferfläche für eine einfache Ablenkung ...Abb. 18.5 Die Energieabhängigkeit der Geschwindigkeitskonstante nach Gl. 18.11 f...Abb. 18.6 Konzentrationsprofil um ein Teilchen bei einer Reaktion in Lösung: Ein...Abb. 18.7 Konzentrationsprofile für ein diffundierendes reagierendes System (etw...Abb. 18.8 Profil der potenziellen Energie einer exothermen Reaktion. Die Höhe de...Abb. 18.9 Ein Reaktionsprofil für eine exotherme Reaktion. Die horizontale Achse...Abb. 18.10 Vereinfacht kann man sich den aktivierten Komplex als breites, flache...Abb. 18.11 Für eine Gruppe verwandter Reaktionen, die hier mit a und b bezeichne...Abb. 18.12 Experimentelle Überprüfungen des kinetischen Salzeffekts für Reaktion...Abb. 18.13 Experimentell bestimmte Abhängigkeit der Geschwindigkeitskonstante ei...Abb. 18.14 Die Änderungen im Reaktionsprofil bei der Spaltung einer C–H‐Bindung ...Abb. 18.15 Ein Proton ist in der Lage, durch eine Energiebarriere zu tunneln, di...Abb. 18.16 Aufbau einer Molekularstrahlapparatur. Die Atome oder Moleküle kommen...Abb. 18.17 Die Veränderung der mittleren Geschwindigkeit der Moleküle und der Br...Abb. 18.18 Eine Überschalldüse streift manche der Moleküle aus dem Strahl ab und...Abb. 18.19 Die Definition des Raumwinkels d Ω für die Streuung.Abb. 18.20 Die Definition des Stoßparameters b als senkrechter Abstand zwischen ...Abb. 18.21 Drei typische Fälle bei der Kollision zweier harter Kugeln: (a) b = 0...Abb. 18.22 Die Streuung kann außer von dem Streuparameter auch von der Geschwind...Abb. 18.23 Zwei Wege, die zur gleichen Flugrichtung führen, können quantenmechan...Abb. 18.24 Die Interferenz der möglichen Flugbahnen, die zur Regenbogenstreuung ...Abb. 18.25 Die IR‐Chemilumineszenz von CO‐Molekülen, die durch die Reaktion O + ...Abb. 18.26 Die Potenzialhyperfläche für die Reaktion H + H 2→ H 2+ H unter der E...Abb. 18.27 Konturliniendiagramm (die Konturlinien entsprechen gleicher potenziel...Abb. 18.28 Verschiedene Trajektorien über die Hyperfläche aus Abb. 18.27. Weg A ...Abb. 18.29 Der Übergangszustand umfasst eine Reihe von Konformationen (hier durc...Abb. 18.30 Einige erfolgreiche (*) und nicht erfolgreiche Stöße. (a)
entsprich...Abb. 18.31 Die Anisotropie der Änderungen der potenziellen Energie, die bei der ...Abb. 18.32 Die Potenzialbarriere für den Angriff eines Cl‐Atoms auf ein Molekül ...Abb. 18.33 Eine attraktive Potenzialhyperfläche. Ein erfolgreicher Stoß (C*) ben...Abb. 18.34 Eine repulsive Potenzialhyperfläche. Ein erfolgreicher Stoß (C*) benö...Abb. 18.35 Die Freie Enthalpie der an einem Elektronentransfer beteiligten Kompl...Abb. 18.36 Die Beziehung zwischen den Energieniveaus der Elektronen (links) und ...Abb. 18.37 Das Modellsystem zur Berechnung der Freien Aktivierungsenthalpie eine...Abb. 18.38 Der parabolische Verlauf von ln k ETin Abhängigkeit von−Δ R G ⊖, wie sie...Abb. 18.39 Der Zusammenhang zwischen log k ETund−Δ R G ⊖für eine Serie von Verbind...
Читать дальше