Change Detection and Image Time-Series Analysis 1

Здесь есть возможность читать онлайн «Change Detection and Image Time-Series Analysis 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Change Detection and Image Time-Series Analysis 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Change Detection and Image Time-Series Analysis 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. <br /><br />Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.

Change Detection and Image Time-Series Analysis 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Change Detection and Image Time-Series Analysis 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.3.2.1. SCV reconstruction based on multiscale morphological processing

In the standard C 2VA, a SCV indicates a pixel that is unchanged or has a possible kind of change according to its specific signature and constructed change variables (i.e. ρ and θ ). However, the original SCVs may contain abnormal spectral variations and noises, which may lead to a high number of omission and commission errors. To address this problem, the morphological profile (MP) is applied to better model and preserve the geometrical structure of change targets. It is defined as a sequence of mathematical closing and opening operations on the image with different structural element (SE) sizes. In particular, opening by reconstruction ( OR ) and closing by reconstruction ( CR ) (Benediktsson et al . 2005) for a gray-level image f are defined as:

[1.8] Change Detection and Image TimeSeries Analysis 1 - изображение 20

[1.9] Change Detection and Image TimeSeries Analysis 1 - изображение 21

where i is the radius of the SE. Here, δi (·) and εi (·) are the dilation and erosion operations, respectively. and are the geodesic reconstruction by dilation and erosion, respectively. In particular, the components of MP, i.e. OR and CR , are able to suppress brighter and darker regions, respectively, that are smaller than the moving SE, while preserving the geometrical characteristics of a region larger than the SE (Dalla Mura et al . 2010). Small isolated objects are merged into a surrounding local background while the main structure is kept. Due to the fact that different image objects usually have different sizes, multiscale representation allows us to explore different hypothetical spatial domains by using a range of SE sizes, in order to obtain the best response for different structures (Mura et al . 2008).

Figure 13 Block scheme of the proposed M 2 C 2 VA technique For the B - фото 22

Figure 1.3. Block scheme of the proposed M 2 C 2 VA technique

For the B -dimensional SCVs X D, at a given scale i , its OR and CR are also B -dimensional:

[1.10] Change Detection and Image TimeSeries Analysis 1 - изображение 23

[1.11] Change Detection and Image TimeSeries Analysis 1 - изображение 24

Note that either Change Detection and Image TimeSeries Analysis 1 - изображение 25can be used as an input for the detector (e.g. S 2CVA), but ambiguities may arise due to the selection of a specific operator (i.e. OR or CR ) and its consequential effects (i.e. suppression of brighter or darker objects). The joint use of OR and CR is likely to be more reliable. In this work, the four-connected neighborhood was considered, and the marker and mask image represented the dilation result and the original input band (for OR ) (or complement image of the original input band for CR ), respectively. A disk shape was selected for the SE, which has been demonstrated to be a robust shape in different scenarios (Benediktsson et al . 2005; Mura et al . 2008). The size of the SE i was increased from 1 to 6, in order to implement a multiscale analysis using the reconstructed SCVs.

1.3.2.2. Multiscale change information ensemble

By increasing the size of the SE, change objects can be modeled at different scales, while exploring the interaction with the surrounding regions to preserve more geometrical details. Accordingly, a more comprehensive description of change objects is obtained through multiscale analysis. Therefore, a multiscale ensemble is conducted on the reconstructed SCVs. Let Change Detection and Image TimeSeries Analysis 1 - изображение 26be the stacking of the reconstructed SCVs (i.e. Change Detection and Image TimeSeries Analysis 1 - изображение 27at a given size i , having a dimensionality of 2 × B. It is defined as:

[1.12] Then the extended SCV is defined as an integration of sequential with - фото 28

Then, the extended SCV картинка 29is defined as an integration of sequential with lower and upper bounds equal to u and v respectively 113 - фото 30with lower and upper bounds equal to u and v , respectively:

[1.13] Consequently an extended SCV feature set with 2 BM dimensionality is built - фото 31

Consequently, an extended SCV feature set with 2× B×M dimensionality is built, where M is the length of components in the sequence, i.e. M = v − u + 1. It is worth noting that S[u, v] extends the change representation along the spectral direction, as well as considering the multiscale spatial information in the ensemble process. Then, S[u, v] is used as the input for the detector.

Figure 14 Block scheme of the proposed superpixellevel multiclass CD - фото 32

Figure 1.4. Block scheme of the proposed superpixel-level multiclass CD approach

1.3.2.3. Multiclass change representation and discrimination

The aim of this step is to visualize and discriminate multiclass changes present in the reconstructed SCVs. To this end, the S 2CVA detector introduced in section 1.3.1 is applied on the S[u, v] . Note that the detector exploits not only spectral variations, but also spatial variations represented in the reconstructed SCV components. It is also worth noting that the 2D polar scattergram projects multiclass change information from the considered high-dimensional reconstructed SCVs into a low-dimensional (i.e. 2D) feature space, which is lossy and ambiguous on the type of changes. However, the most significant discriminative information of different changes is preserved.

Instead of using thresholding to segment the binary and multiple classes in the variables ρ and θ , the simple but effective clustering, i.e. k -means, is used for generating the final CD map, which does not rely on any specific data distribution. This is due to the fact that changed and unchanged pixels in ρ and multiclass changes in θ do not always follow a Gaussian mixture distribution (Zanetti et al . 2015). Thus, for the binary CD step (i.e. separating two classes), the number of clusters is equal to 2, and for the multiclass CD step, the number is defined as the number of changes observed in the 2D polar scattergram.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Change Detection and Image Time-Series Analysis 1»

Представляем Вашему вниманию похожие книги на «Change Detection and Image Time-Series Analysis 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Change Detection and Image Time-Series Analysis 1»

Обсуждение, отзывы о книге «Change Detection and Image Time-Series Analysis 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x