48 48 Vicente‐Lozano, M., Franceschetti, G., Ares‐Pena, F.J., and Moreno‐Piquero, E. (2002). Analysis and synthesis of a printed array for satellite communication with moving vehicles. IEEE Transactions on Antennas and Propagation 50 (11): 1555–1559.
49 49 Pan, Y.‐M. and Leung, K.W. (2012). Wideband circularly polarized dielectric bird‐nest antenna with conical radiation pattern. IEEE Transactions on Antennas and Propagation 61 (2): 563–570.
50 50 Lau, K. and Luk, K. (2006). A wideband circularly polarized conical‐beam patch antenna. IEEE Transactions on Antennas and Propagation 54 (5): 1591–1594.
51 51 Lin, W. and Wong, H. (2014). Circularly polarized conical‐beam antenna with wide bandwidth and low profile. IEEE Transactions on Antennas and Propagation 62 (12): 5974–5982.
52 52 Kai, C., Huang, P., Shen, F. et al. (2017). Orbital angular momentum shift keying based optical communication system. IEEE Photonics Journal 9 (2): 1–10.
53 53 Trichili, A., Park, K.‐H., Zghal, M. et al. (2019). Communicating using spatial mode multiplexing: Potentials, challenges and perspectives. IEEE Communications Surveys & Tutorials 21 (4): 3175–3203.
54 54 Krenn, M., Fickler, R., Fink, M. et al. (2014). Communication with spatially modulated light through turbulent air across Vienna. New Journal of Physics 16 (11): 113028.
55 55 Krenn, M., Handsteiner, J., Fink, M. et al. (2016). Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences 113 (48): 13648–13653.
56 56 Molisch, A. (2005). Wireless Communications. Wiley‐IEEE Press.
57 57 Goldsmith, A. (2005). Wireless Communications. USA: Cambridge University Press.
58 58 Lee, D., Sasaki, H., Fukumoto, H. et al. (2017). Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications. IEICE Transactions on Communications 100 (7): 1044–1063.
59 59 Cheng, W., Zhang, W., Jing, H. et al. (2018). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.
60 60 Huang, H., Xie, G., Yan, Y. et al. (2014). 100 Tbit s−1 free‐space data link enabled by three‐dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters 39 (2): 197–200.
61 61 Wang, J., Yang, J.‐Y., Fazal, I.M. et al. (2012). Terabit free‐space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6 (7): 488.
62 62 Thidé, B., Then, H., Sjöholm, J. et al. (2007). Utilization of photon orbital angular momentum in the low‐frequency radio domain. Physical Review Letters 99 (8): 087701.
63 63 Zhang, W., Zheng, S., Hui, X. et al. (2016). Mode division multiplexing communication using microwave orbital angular momentum: An experimental study. IEEE Transactions on Wireless Communications 16 (2): 1308–1318.
64 64 Yan, Y., Xie, G., Lavery, M.P. et al. (2014). High‐capacity millimetre‐wave communications with orbital angular momentum multiplexing. Nature Communications 5: 4876.
65 65 Willner, A. (2019). Optical Fiber Telecommunications, vol. 11. Academic Press.
66 66 Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper ‐ Cisco, https://www.cisco.com/c/en/us/solutions/collateral/service‐provider/global‐cloud‐index‐gci/white‐paper‐c11‐738085.html#_Toc503317520(accessed 2 March 2020).
67 67 Richardson, D., Fini, J., and Nelson, L.E. (2013). Space‐division multiplexing in optical fibres. Nature Photonics 7 (5): 354.
68 68 Saridis, G.M., Alexandropoulos, D., Zervas, G., and Simeonidou, D. (2015). Survey and evaluation of space division multiplexing: From technologies to optical networks. IEEE Communications Surveys & Tutorials 17 (4): 2136–2156.
69 69 Rusch, L.A., Rad, M., Allahverdyan, K. et al. (2018). Carrying data on the orbital angular momentum of light. IEEE Communications Magazine 56 (2): 219–224.
70 70 Li, G., Bai, N., Zhao, N., and Xia, C. (2014). Space‐division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics 6 (4): 413–487.
71 71 Ramachandran, S. and Kristensen, P. (2013). Optical vortices in fiber. Nanophotonics 2 (5‐6): 455–474.
72 72 Li, Y., Jin, L., Wu, H. et al. (2017). Superposing multiple LP modes with microphase difference distributed along fiber to generate oam mode. IEEE Photonics Journal 9 (2): 1–9.
73 73 Ramachandran, S., Gregg, P., Kristensen, P., and Golowich, S. (2015). On the scalability of ring fiber designs for OAM multiplexing. Optics Express 23 (3): 3721–3730.
74 74 Chen, S. and Wang, J. (2017). Theoretical analyses on orbital angular momentum modes in conventional graded‐index multimode fibre. Scientific Reports 7 (1): 1–15.
75 75 Li, S. and Wang, J. (2014). A compact trench‐assisted multi‐orbital‐angular‐momentum multi‐ring fiber for ultrahigh‐density space‐division multiplexing (19 rings × 22 modes). Scientific Reports 4: 3853.
76 76 Dashti, P.Z., Alhassen, F., and Lee, H.P. (2006). Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Physical Review Letters 96 (4): 043604.
77 77 Bozinovic, N., Kristensen, P., and Ramachandran, S. (2011). Long‐range fiber‐transmission of photons with orbital angular momentum. In: CLEO: Science and Innovations, CTuB1. Optical Society of America.
78 78 Bozinovic, N., Golowich, S., Kristensen, P., and Ramachandran, S. (2012). Control of orbital angular momentum of light with optical fibers. Optics Letters 37 (13): 2451–2453.
79 79 Ramachandran, S., Bozinovic, N., Gregg, P. et al. (2012). Optical vortices in fibres: A new degree of freedom for mode multiplexing. In: 2012 38th European Conference and Exhibition on Optical Communications, 1–3. IEEE.
80 80 Bozinovic, N., Yue, Y., Ren, Y. et al. (2013). Terabit‐scale orbital angular momentum mode division multiplexing in fibers. Science 340 (6140): 1545–1548.
81 81 Ingerslev, K., Gregg, P., Galili, M. et al. (2018). 12 mode, WDM, MIMO‐free orbital angular momentum transmission. Optics Express 26 (16): 20225–20232.
82 82 Huang, H., Milione, G., Lavery, M.P. et al. (2015). Mode division multiplexing using an orbital angular momentum mode sorter and MIMO‐DSP over a graded‐index few‐mode optical fibre. Scientific Reports 5 (1): 1–7.
83 83 Zhu, L., Wang, A., Chen, S. et al. (2017). Orbital angular momentum mode groups multiplexing transmission over 2.6‐km conventional multi‐mode fiber. Optics Express 25 (21): 25637–25645.
84 84 Wang, A., Zhu, L., Wang, L. et al. (2018). Directly using 8.8‐km conventional multi‐mode fiber for 6‐mode orbital angular momentum multiplexing transmission. Optics Express 26 (8): 10038–10047.
85 85 Zhu, L., Wang, A., Chen, S. et al. (2018). Orbital angular momentum mode multiplexed transmission in heterogeneous few‐mode and multi‐mode fiber network. Optics Letters 43 (8): 1894–1897.
86 86 Li, S. and Wang, J. (2013). Multi‐orbital‐angular‐momentum multi‐ring fiber for high‐density space‐division multiplexing. IEEE Photonics Journal 5 (5): 7101007–7101007.
87 87 Li, S. and Wang, J. (2015). Supermode fiber for orbital angular momentum (OAM) transmission. Optics Express 23 (14): 18736–18745.
88 88 Papathanasopoulos, A., Rahmat‐Samii, Y., Garcia, N., and Chisum, J.D. (2020). A novel collapsible flat‐layered metamaterial gradient‐refractive‐index (GRIN) lens antenna. IEEE Transactions on Antennas and Propagation 68 (3): 1312–1321.
89 89 Wei, X., Liu, C., Niu, L. et al. (2015). Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Applied Optics 54 (36): 10641–10649.
90 90 Zhang, C. and Ma, L. (2016). Millimetre wave with rotational orbital angular momentum. Scientific Reports 6 (1): 1–8.
Читать дальше