Electromagnetic Vortices

Здесь есть возможность читать онлайн «Electromagnetic Vortices» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Electromagnetic Vortices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Electromagnetic Vortices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the most recent advances in electromagnetic vortices  In 
, a team of distinguished researchers delivers a cutting-edge treatment of the research and development of electromagnetic vortex waves, including their related wave properties and several potentially transformative applications. 
The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. 
With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: 
Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as OAM detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and orbital angular momentum-based structured radio beams and their applications In-depth examinations of OAM multiplexing using microwave circuits for near-field communications and wireless power transmission Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, 
 is also an indispensable resource for researchers at large defense contractors and government labs.

Electromagnetic Vortices — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Electromagnetic Vortices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

5 5 Veysi, M., Guclu, C., Capolino, F., and Rahmat‐Samii, Y. (2018). Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas and Propagation Magazine 60 (2): 68–81.

6 6 Cheng, W., Zhang, W., Jing, H. et al. (2019). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.

7 7 Gori, F., Guattari, G., and Padovani, C. (1987). Bessel‐Gauss beams. Optics Communications 64 (6): 491–495.

8 8 Karimi, E., Zito, G., Piccirillo, B. et al. (2007). Hypergeometric‐Gaussian modes. Optics Letters 32 (21): 3053–3055.

9 9 Maurer, C., Jesacher, A., Fürhapter, S. et al. (2007). Tailoring of arbitrary optical vector beams. New Journal of Physics 9 (3): 78.

10 10 Allen, L., Padgett, M., and Babiker IV, M. (1999). The orbital angular momentum of light, Progress in Optics. Elsevier 39: 291–372.

11 11 Willner, A.E., Huang, H., Yan, Y. et al. (2015). Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7 (1): 66–106.

12 12 Padgett, M.J., Miatto, F.M., Lavery, M.P. et al. (2015). Divergence of an orbital‐angular‐momentum‐carrying beam upon propagation. New Journal of Physics 17 (2): 023011.

13 13 Beijersbergen, M., Coerwinkel, R., Kristensen, M., and Woerdman, J. (1994). Helical‐wavefront laser beams produced with a spiral phaseplate. Optics Communications 112 (5‐6): 321–327.

14 14 Trichili, A., Rosales‐Guzmán, C., Dudley, A. et al. (2016). Optical communication beyond orbital angular momentum. Scientific Reports 6: 27674.

15 15 Oldoni, M., Spinello, F., Mari, E. et al. (2015). Space‐division demultiplexing in orbital‐angular‐momentum‐based mimo radio systems. IEEE Transactions on Antennas and Propagation 63 (10): 4582–4587.

16 16 Djordjevic, I.B. (2011). Deep‐space and near‐earth optical communications by coded orbital angular momentum (OAM) modulation. Optics Express 19 (15): 14277–14289.

17 17 Gibson, G., Courtial, J., Padgett, M.J. et al. (2004). Free‐space information transfer using light beams carrying orbital angular momentum. Optics Express 12 (22): 5448–5456.

18 18 Ge, X., Zi, R., Xiong, X. et al. (2017). Millimeter wave communications with OAM‐SM scheme for future mobile networks. IEEE Journal on Selected Areas in Communications 35 (9): 2163–2177.

19 19 Turnbull, G., Robertson, D., Smith, G. et al. (1996). The generation of free‐space Laguerre‐Gaussian modes at millimetre‐wave frequencies by use of a spiral phaseplate. Optics Communications 127 (4‐6): 183–188.

20 20 Yao, A.M. and Padgett, M.J. (2011). Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3 (2): 161–204.

21 21 Gradshteyn, I.S. and Ryzhik, I.M. (2014). Table of Integrals, Series, and Products, 7e. Academic press.

22 22 Rahmat‐Samii, Y. (1988). Reflector antennas. In: Antenna Handbook: Theory, Applications, and Design (eds. S.W. Lee and Y.T. Lo), 949–1072. Boston, MA: Springer US.

23 23 Tamburini, F., Mari, E., Sponselli, A. et al. (2012). Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics 14 (3): 033001.

24 24 Born, M. and Wolf, E. (2013). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6e. Elsevier.

25 25 Balanis, C.A. (2016). Antenna Theory: Analysis and Design, 4e. John Wiley & Sons.

26 26 Friis, H.T. (1946). A note on a simple transmission formula. Proceedings of the IRE 34 (5): 254–256.

27 27 Cho, Y.H. and Byun, W.J. (2019). Generalized friis transmission equation for orbital angular momentum radios. IEEE Transactions on Antennas and Propagation 67 (4): 2423–2429.

28 28 Nguyen, D.K., Pascal, O., Sokoloff, J. et al. (2015). Antenna gain and link budget for waves carrying orbital angular momentum. Radio Science 50 (11): 1165–1175.

29 29 D. K. Nguyen, O. Pascal, J. Sokoloff, et al. (2014). Discussion about the link budget for electromagnetic wave with orbital angular momentum, The 8th European Conference on Antennas and Propagation (EuCAP 2014). IEEE, pp. 1117–1121.

30 30 Cagliero, A., De Vita, A., Gaffoglio, R., and Sacco, B. (2015). A new approach to the link budget concept for an OAM communication link. IEEE Antennas and Wireless Propagation Letters 15: 568–571.

31 31 Craeye, C. (2015). On the transmittance between OAM antennas. IEEE Transactions on Antennas and Propagation 64 (1): 336–339.

32 32 C. Rui, Z. Hong, M. Marco, et al. (2019). Orbital angular momentum waves: Generation, detection and emerging applications, arXiv preprint arXiv:1903.07818.

33 33 Edfors, O. and Johansson, A.J. (2011). Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas and Propagation 60 (2): 1126–1131.

34 34 Tamagnone, M., Craeye, C., and Perruisseau‐Carrier, J. (2012). Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’. New Journal of Physics 14 (11): 118001.

35 35 Morabito, A.F., Di Donato, L., and Isernia, T. (2018). Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory. IEEE Antennas and Propagation Magazine 60 (2): 59–67.

36 36 Xie, G., Li, L., Ren, Y. et al. (2015). Performance metrics and design considerations for a free‐space optical orbital‐angular‐momentum multiplexed communication link. Optica 2 (4): 357–365.

37 37 Gao, X., Song, X., Zheng, Z. et al. (2020). Misalignment measurement of orbital angular momentum signal based on spectrum analysis and image processing. IEEE Transactions on Antennas and Propagation 68 (1): 521–526.

38 38 Anguita, J.A., Neifeld, M.A., and Vasic, B.V. (2008). Turbulence‐induced channel crosstalk in an orbital angular momentum‐multiplexed free‐space optical link. Applied Optics 47 (13): 2414–2429.

39 39 Tyler, G.A. and Boyd, R.W. (2009). Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Optics Letters 34 (2): 142–144.

40 40 Paterson, C. (2005). Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters 94 (15): 153901.

41 41 Rodenburg, B., Lavery, M.P., Malik, M. et al. (2012). Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Optics Letters 37 (17): 3735–3737.

42 42 Ren, Y., Huang, H., Xie, G. et al. (2013). Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Optics Letters 38 (20): 4062–4065.

43 43 Malik, M., O’Sullivan, M., Rodenburg, B. et al. (2012). Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express 20 (12): 13195–13200.

44 44 Chaibi, A., Mafusire, C., and Forbes, A. (2013). Propagation of orbital angular momentum carrying beams through a perturbing medium. Journal of Optics 15 (10): 105706.

45 45 Trichili, A., Salem, A.B., Dudley, A. et al. (2016). Encoding information using Laguerre Gaussian modes over free space turbulence media. Optics Letters 41 (13): 3086–3089.

46 46 Willner, A.E., Ren, Y., Xie, G. et al. (2017). Recent advances in high‐capacity free‐space optical and radio‐frequency communications using orbital angular momentum multiplexing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2087): 20150439.

47 47 Yan, Y., Li, L., Xie, G. et al. (2016). Multipath effects in millimetre‐wave wireless communication using orbital angular momentum multiplexing. Scientific Reports 6: 33482.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Electromagnetic Vortices»

Представляем Вашему вниманию похожие книги на «Electromagnetic Vortices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Electromagnetic Vortices»

Обсуждение, отзывы о книге «Electromagnetic Vortices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x