Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
картинка 150

The σ -algebra generated by X represents all the events that can be observed by drawing X . It represents the information revealed by X .

DEFINITION 1.14.– Let (Ω, картинка 151, ℙ) be a probability space .

– Let X and Y be two random variables on (Ω, , ℙ) taking values in (E1, ε1) and (E2, ε2). Then, X and Y are said to be independent if the σ-algebras σ(X) and σ(Y) are independent.

– Any family (Xi)i∈I of random variables is independent if the σ-algebras σ(Xi) are independent.

– Let be a sub-σ-algebra of , and let X be a random variable. Then, X is said to be independent of if σ(X) is independent of or, in other words, and are independent.

PROPOSITION 1.8.– If X and Y are two integrable and independent random variables, then their product XY is integrable and картинка 152[ XY ] = картинка 153[ X ] картинка 154[ Y ].

1.2.4. Random vectors

We will now more closely study random variables taking values in ℝ d, with d ≥ 2. This concept has already been defined in Definition 1.9. We will now look at the relations between the random vector and its coordinates. When d = 2, we then speak of a random couple.

PROPOSITION 1.9.– Let X be a real random vector on the probability space (Ω, ℙ taking values in ℝ d Then is such that for any i 1 d X - фото 155, ℙ), taking values in ℝ d . Then ,

is such that for any i 1 d X i is a real random variable - фото 156

is such that for any i ∈ {1, ..., d }, X i is a real random variable .

DEFINITION 1.15.– A random vector is said to be discrete if each of its components, X i, is a discrete random variable .

DEFINITION 1.16.– Let Martingales and Financial Mathematics in Discrete Time - изображение 157 be a discrete random couple such that

The conjoint distribution or joint distribution or simply the distribution - фото 158

The conjoint distribution (or joint distribution or, simply, the distribution) of X is given by the family

The marginal distributions of X are the distributions of X 1 and X 2 These - фото 159

The marginal distributions of X are the distributions of X 1 and X 2 . These distributions may be derived from the conjoint distribution of X through:

and The concept of joint distributions and marginal distributions can - фото 160

and

The concept of joint distributions and marginal distributions can naturally be - фото 161

The concept of joint distributions and marginal distributions can naturally be extended to vectors with dimension larger than 2.

EXAMPLE 1.21.– A coin is tossed 3 times, and the result is noted. The universe of possible outcomes is Ω = { T, H } 3 . Let X denote the total number of tails obtained and Y denote the number of tails obtained at the first toss. Then ,

The couple X Y is therefore a random vector referred to here as a - фото 162

The couple ( X, Y ) is, therefore, a random vector (referred to here as a “random couple”), with joint distribution defined by

for any i j X Ω Y Ω which makes it possible to derive the - фото 163

for any ( i, j ) X (Ω) × Y (Ω), which makes it possible to derive the distributions of X and Y (called the marginal distributions of the couple ( X, Y ) ):

Distribution of X:

Distribution of Y 125 C - фото 164

Distribution of Y :

125 Convergence of sequences of random variables To conclude this section - фото 165 картинка 166

1.2.5. Convergence of sequences of random variables

To conclude this section on random variables, we will review some classic results of convergence for sequences of random variables. Throughout the rest of this book, the abbreviation r.v . signifies random variable .

DEFINITION 1.17.– Let ( X n) n≥1 and X be r.v.s defined on (Ω, картинка 167, ℙ).

1 1) It is assumed that there exists p > 0 such that, for any n ≥ 0, [|Xn|p] < ∞, and [|X|p] < ∞. It is said that the sequence of random variables (Xn)n≥1 converges on the average of the order p or converges in Lp towards X, ifWe then write In the specific case where p = 2, we say there is a convergence in quadratic mean.

2 2) The sequence of r.v. (Xn)n≥1 is called almost surely (a.s.) convergent towards X, if

We then write THEOREM 11 Monotone convergence theorem Let X n n1 be a - фото 168

We then write

THEOREM 1.1 (Monotone convergence theorem).– Let ( X n) n≥1 be a sequence of positive and non-decreasing random variables and let X be an integrable random variable, all of these defined on the same probability space (Ω, P If X n converges almost surely to X then THEOREM 12 Dominated - фото 169P) . If ( X n) converges almost surely to X, then

THEOREM 12 Dominated convergence theorem Let X n n1 be a sequence of - фото 170

THEOREM 1.2 (Dominated convergence theorem).– Let ( X n) n≥1 be a sequence of random variables and let X be another random variable, all defined on the same probability space (Ω, картинка 171, ℙ) . If the sequence ( X n) converges to X a.s., and for any n ≥ 1, | X n|≤ Z, where Z is an integrable random variable, then and, in particular ,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x