Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

EXAMPLE 1.23.– Let ( X n) n∈ℕ be a sequence of random variables and we consider, for any n ∈ ℕ, картинка 192 n= σ ( X 0, X 1, ..., X n), the σ-algebra generated by { X 0, ..., X n} . The sequence ( картинка 193 n) n∈ℕ is, therefore, a filtration, called a natural filtration of ( X n) n∈ℕ or filtration generated by ( X n) n∈ℕ . This filtration represents the information revealed over time, by the observation of the drawings of the sequence X = ( X n) n∈ℕ.

картинка 194

DEFINITION 1.21.– Let (Ω, картинка 195, ℙ, ( картинка 196 n) n∈ℕ) be a filtered probability space, and let X = ( X n) n∈ℕ be a stochastic process .

– X is said to be adapted to the filtration (n)n∈ℕ (or again (n)n∈ℕ−adapted), if Xn is n-measurable for any n ∈ ℕ;

– X is said to be predictable with respect to the filtration (n)n∈ℕ (or again (n)n∈ℕ−predictable), if Xn is n−1-measurable for any n ∈ ℕ∗.

EXAMPLE 1.24.– A process is always adapted with respect to its natural filtration .

картинка 197

As its name indicates, for a predictable process, we know its value X nfrom the instant n − 1.

1.4. Exercises

EXERCISE 1.1.– Let Ω = { a, b, c }.

1 1) Completely describe all the σ-algebras of Ω.

2 2) State which are the sub-σ-algebras of which.

EXERCISE 1.2.– Let Ω = { a, b, c, d }. Among the following sets, which are σ -algebras?

1 1)

2 2)

3 3)

4 4)

For those which are not σ -algebras, completely describe the σ -algebras they generate.

EXERCISE 1.3.– Let X be a random variable on (Ω, картинка 198) and let картинка 199be a sub- σ -algebra of картинка 200. Show that X is картинка 201-measurable if and only if σ ( X ) ⊂ картинка 202.

EXERCISE 1.4.– Let Aкартинка 203and let картинка 204be a sub- σ -algebra of картинка 205. Show that картинка 206is картинка 207-measurable if and only if Aкартинка 208.

EXERCISE 1.5.– Let Ω = {P, F} × {P, F} and = картинка 209= картинка 210(Ω), corresponding to two successive coin tosses. Let

– X1 be the random variable number of T on the first toss;

– X2 be the number of T on the second toss;

– Y be the number of T obtained on the two tosses;

– and Z = 1 if the two tosses yielded an identical result; otherwise, it is 0.

1 1) Describe 1 = σ(X1) and 2 = σ(X2). Is X1 2-measurable?

2 2) Describe = σ(Y). Is Y 1-measurable? Is X1 -measurable?

3 3) Describe = σ(Z). Is Z 1-measurable, -measurable? Is X1 -measurable?

4 4) Give the inclusions between , 1, 2, and .

EXERCISE 1.6.– Let ( X n) n≥1be a sequence of independent random variables with the same Rademacher distribution with parameter 1 / 2:

Martingales and Financial Mathematics in Discrete Time - изображение 211

Let S 0= 0 and Martingales and Financial Mathematics in Discrete Time - изображение 212The process S = ( S n) n∈ℕis called the simple symmetric random walk on картинка 213. It will be studied in detail in Chapter 3. We write X 0= 0. Show that the filtration generated by the sequence ( X n) n∈ℕis the same as that generated by the sequence ( S n) n∈ℕ.

EXERCISE 1.7.– Consider the following game of chance. A player begins by choosing a number between 6 and 8 (inclusive), which we call the principal. The player then rolls 2 uncut, six-sided, non-rigged dice and sums the result. The wins are as follows:

– If the sum is 2 or 3, the player loses 1 DT (Tunisian dinar).

– If the sum is 11, the player wins 1 DT if the principal is 7; otherwise, they lose 1 DT.

– If the sum is 12, the player wins 1 DT if the principal is 6 or 8; otherwise, they lose 1 DT.

– Finally, in all other cases, nothing happens (no win, no loss).

1 1) Determine Ω, the universe of all outcomes of the experiment.

2 2) S is the random variable giving the sum of the two dice. Determine the distribution of S.

3 3) X7 is the random variable giving the player’s winnings (negative in the case of a loss) when the principal is 7. Determine the distribution of X7.

4 4) Calculate [X7] and (X7).

5 5) We consider X6 to be the winnings of the player when the principal is 6. Determine the distribution of X6 and then calculate [X6].

EXERCISE 1.8.– Let p ∈]0, 1[. We have one coin that leads to tails with the probability p . We toss this coin until we obtain tails for the second time. Let X be the number of heads obtained during this experiment.

1 1) Determine the distribution of X.

2 2) Justify the existence of the expectation of X.

3 3) Calculate [X].

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x