Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
картинка 130

The following proposition establishes a link between the expectation of a discrete, random variable and measure theory.

PROPOSITION 1.3.– Let X be a discrete random variable such that X (Ω) = { x i, iI }, where I ⊂ ℕ . It is assumed that Martingales and Financial Mathematics in Discrete Time - изображение 131

Then ,

The above proposition also justifies the concept of integrability introduced in - фото 132

The above proposition also justifies the concept of integrability introduced in Definition 1.12. Further, in this case (i.e. when X is integrable: we write X L 1Ω ℙ When X pis integrable for a certain real number p 1 - фото 133we write XL 1(Ω, ℙ When X pis integrable for a certain real number p 1 ie when we write - фото 134, ℙ).

When X pis integrable for a certain real number p ≥ 1 (i.e. when we write Let us look at some of the properties of expectations PROPOSITION - фото 135we write

Let us look at some of the properties of expectations PROPOSITION 14 Let X - фото 136

Let us look at some of the properties of expectations.

PROPOSITION 1.4.– Let X and Y be two integrable, discrete random variables, a, b . Then ,

1 1) Linearity: [aX + bY ] = a[X]+ b[Y ].

2 2) Transfer theorem: if g is a measurable function such that g(X) is integrable, then

3 3) Monotonicity: if X ≤ Y almost surely (a.s.), then [X] ≤ [Y].

4 4) Cauchy–Schwartz inequality: If X2 and Y2 are integrable, then XY is integrable and

5 5) Jensen inequality: if g is a convex function such that g(X) is integrable, then,

DEFINITION 1.13.– Let X be a discrete random variable, such that X (Ω) = { x i, iI }, I ⊂ ℕ and X 2 is integrable. The variance of X is the real number:

Variance satisfies the following properties PROPOSITION 15 If a discrete - фото 137

Variance satisfies the following properties.

PROPOSITION 1.5.– If a discrete random variable X admits variance, then ,

1 1) (X) ≥ 0.

2 2) (X) = [X2] − ([X])2.

3 3) For any (a, b) ∈ ℝ2, (aX + b) = a2(X).

1.2.3. σ-algebra generated by a random variable

We now define the σ -algebra generated by a random variable. This concept is important for several reasons. For instance, it can make it possible to define the independence of random variables. It is also at the heart of the definition of conditional expectations; see Chapter 2.

PROPOSITION 1.6.– Let X be a real random variable, defined on (Ω, картинка 138, ℙ) taking values in ( E , ε ) . Then , картинка 139 X= X −1( ε ) = { X −1( A ); Aε} is a sub-σ-algebra of on Ω . This is called the σ-algebra generated by the random variable X. It is written as σ ( X ) . It is the smallest σ-algebra on Ω that makes X measurable:

EXAMPLE 119 Let 0 Ω and X c ℝ be a constant Then for any Borel - фото 140

EXAMPLE 1.19.– Let картинка 141 0= {∅, Ω} and X = c ∈ ℝ be a constant. Then, for any Borel set B in ℝ, ( XB ) has the valueif cB and Ω if cB. Thus, the σ-algebra generated by X is картинка 142 0 . Reciprocally, it can be demonstrated that the only картинка 143 0 -measurable random variables are the constants. Indeed, let X be a картинка 144 0 -measurable random variable. Assume that it takes at least two different values, x and y. It may be assumed that yx without loss of generality. Therefore , картинка 145 We have that ( XB ) is non-empty because xB but is not Ω since yB. Therefore, X is not картинка 146 0 -measurable .

картинка 147

PROPOSITION 1.7.– Let X be a random variable on (Ω, картинка 148, ℙ) taking values in ( E , ε ) and let σ ( X ) be the σ-algebra generated by X. Thus, a random variable Y is σ ( X ) -measurable if and only if there exists a measurable function f such that Y = f ( X ).

This technical result will be useful in certain demonstrations further on in the text. In general, if it is known that Y is σ ( X )-measurable, we cannot (and do not need to) make explicit the function f . Reciprocally, if Y can be written as a measurable function of X , it automatically follows that Y is σ ( X )-measurable.

EXAMPLE 1.20.– A die is rolled 2 times. This experiment is modeled by Ω = {1, 2, 3, 4, 5, 6} 2 endowed with the σ-algebra of its subsets and the uniform distribution. Consider the mappings X 1, X 2 and Y from Ω ontodefined by

thus X i is the result of the ith roll and Y is the parity indicator of the - фото 149

thus, X i is the result of the ith roll and Y is the parity indicator of the first roll. Therefore, thus, Y is σ ( X 1) -measurable. On the other hand, Y cannot be written as a function of X 2.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x