Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
THEOREM 13 Strong law of large numbers Let X n n1 be a sequence of - фото 172

THEOREM 1.3 (Strong law of large numbers).– Let ( X n) n≥1 be a sequence of integrable, independent random variables from the same distribution. Then ,

13 Stochastic processes The main objective of this book is to study certain - фото 173

1.3. Stochastic processes

The main objective of this book is to study certain families of stochastic (or random) processes in discrete time. There are two ways of seeing such objects:

– as a sequence (Xn)n∈ℕ of real random variables;

– as a single random variable X taking values in the set of real sequences.

The index n represents time. Since n ∈ ℕ, we speak of processes in discrete time. In the rest of this book, unless indicated otherwise, we will only consider processes taking discrete real values. The notation E thus denotes a finite or countable subset of ℝ and ε = картинка 174( E ), the set of subsets of E .

DEFINITION 1.18.– A stochastic process is a sequence X = ( X n) n∈ℕ of random variables taking values in ( E , ε ) . The process X is then a random variable taking values in ( E ℕ, ε ⊗ℕ).

EXAMPLE 1.22.– A coin is tossed an infinite number of times. This experiment is modeled by Ω = { T, H } ℕ∗ . For n ∈ ℕ ∗, consider the mappings X n to Ω indefined by

the number of tails at the nth toss Therefore X n n ℕ are discrete real - фото 175

the number of tails at the nth toss. Therefore, X n, n ∈ ℕ ∗ are discrete, real random variables and the sequence X = ( X n) n∈ℕ is a stochastic process .

картинка 176

DEFINITION 1.19.– Let X = ( X n) n∈ℕ be a stochastic process. For all n ∈ ℕ, the distribution of the vector ( X 0, X 1 ,..., X n) is denoted by μ n . The probability distributions ( μ n) n∈ℕ are called finite-dimensional distributions or finite-dimensional marginal distributions of the process X = ( X n) n∈ℕ.

PROPOSITION 1.10.– Let X = ( X n) n∈ℕ be a stochastic process and let ( μ n) n∈ℕ be its finite-dimensional distributions. Then, for all n ∈ N∗ and ( A 0 ,..., A n−1) ∈ ε n, we have

In other words the restriction of the marginal distribution of the vector X - фото 177

In other words, the restriction of the marginal distribution of the vector ( X 0 ,..., X n) to its first n coordinates is exactly the distribution of the vector ( X 0 ,..., X n−1).

PROOF.– This proof directly follows from the definition of the objects. We have

and hence the desired equality Indeed this property completely - фото 178

and hence, the desired equality.

Indeed, this property completely characterizes the distribution of the process X according to the following theorem.

THEOREM 1.4 (Kolmogorov).– The canonical space (Ω, картинка 179) is defined in the following manner. Let Ω = E. The c oordinate mappings ( X n) n∈ℕ are defined by X n( ω ) = ω n for any ω = ( ω n) n∈ℕ∈ Ω and we write картинка 180= σ ( X n ,n ∈ ℕ) . Let ( μ n) n∈ℕ be a family of probability distributions such that

1 1) for any n ∈ ℕ, μn is defined on (En+1, ε⊗(n+1)),

2 2) for any n ∈ ℕ∗ and (A0,..., An−1) ∈ εn, we have μn−1(A0 × ... × An−1) = μn(A0 × ... × An−1 × E).

Therefore, there exists a unique probability distribution μ over the canonical space (Ω, картинка 181) such that the process X = ( X n) n∈ℕ for the coordinate mapping has the distribution μ and for the finite-dimensional distributions has the sequence ( μ n) n∈ℕ.

This result is very important for the theory of processes as it signifies that it is sufficient to specify (all) the finite-dimensional distributions and for them to be compatible with each other, to uniquely define a process distribution over the space of infinite random sequences. In practice, this makes it possible to justify the construction of processes (existence property) as well as showing that two processes have the same distribution (unicity property).

To study the random variables taking values in the set of sequences, we need new definitions for σ -algebras and measurability.

DEFINITION 1.20.– In a probability space (Ω, картинка 182, ℙ), a filtration is a sequence ( картинка 183 n) n∈ℕ of sub-σ-algebras of картинка 184 such that, for any n ∈ ℕ, картинка 185 n⊂ картинка 186 n+1 . This is, thus, a non-decreasing sequence (for inclusion) of sub-σ-algebras of картинка 187.

When ( картинка 188 n) n∈ℕ is a filtration defined on the probability space (Ω, картинка 189, ℙ), the quadruplet (Ω, картинка 190, ℙ, ( картинка 191 n) n∈ℕ) is said to be a filtered probability space .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x