Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

– If (An)n∈ℕ is decreasing (for the inclusion), then,

We will now review the concept of independent events and σ -algebras.

DEFINITION 1.8.– Let (Ω, картинка 80, ℙ) be a probability space .

– Two events, A and B, are independent if ℙ(A ∩ B) = ℙ(A) × ℙ(B).

– A family of events (Ai ∈ i, i ∈ I) is said to be mutually independent if for any finite family J ⊂ I, we have

– Two σ-algebras and are independent if for any A ∈ and B ∈ , A and B are independent.

– A family of sub-σ-algebra i ⊂ , i ∈ I is mutually independent if any family of events (Ai ∈ i, i ∈ I) is mutually independent.

EXAMPLE 1.10.– We roll a six-faced die and write

– A1 the event “the number obtained is even”; and

– A2 the event “the number obtained is a multiple of 3” .

The universe of possible outcomes is Ω = {1, 2, 3, 4, 5, 6} which has a finite number of elements and as all its elements have the same chance of occurring, we can endow it with the uniform probability . Since

we have Therefore A 1 and A 2 are two independent events - фото 81

we have

Therefore A 1 and A 2 are two independent events EXAMPLE 111 A coin is - фото 82

Therefore, A 1 and A 2 are two independent events .

картинка 83

EXAMPLE 1.11.– A coin is tossed twice. The following events are considered:

– A1 “Obtaining tails (T) on the first toss”;

– A2 “Obtaining heads (H) on the second toss”; and

– A3 “Obtaining the same face on both tosses”.

The universe of possible outcomes is

which has four elements and as all elements have the same chance of occurring - фото 84

which has four elements, and as all elements have the same chance of occurring, it can be endowed with uniform probability. Since

we have and Thus the events A - фото 85

we have

and Thus the events A 1 A 2 and A 3 are pairwise independent but are not - фото 86

and Thus the events A 1 A 2 and A 3 are pairwise independent but are not - фото 87 Thus, the events A 1, A 2 and A 3 are pairwise independent, but are not mutually independent. Unless specified, the notion of independence by default always signifies mutual independence and not pairwise independence .

картинка 88

1.2.2. Random variables

Let us now recall the definition of a generic random variable, and then the specific case of discrete random variables.

DEFINITION 1.9.– Let (Ω, картинка 89, ℙ) be a probabilizable space and ( E , ε ) be a measurable space. A random variable on the probability space (Ω, картинка 90, ℙ) taking values in the measurable space ( E , ε ), is any mapping X : Ω → E such that, for any B in ε, X −1( B ) ∈ картинка 91 ; in other words, X : Ω → E is a random variable if it is an ( ε measurable mapping We then write the event X belongs to B by In - фото 92, ε ) -measurable mapping. We then write the event “ X belongs to B ” by

In the specific case where E ℝ and ε ℝ the mapping X is called a real - фото 93

In the specific case where E = ℝ and = ε = картинка 94(ℝ), the mapping X is called a real random variable. If E = ℝ d with d ≥ 2, and ε = картинка 95(ℝ d), the mapping X is said to be a real random vector .

EXAMPLE 1.12.– Let us return to the experiment where a six-sided die is rolled, where the set of possible outcomes is Ω = {1, 2, 3, 4, 5, 6}, which is endowed with the uniform probability. Consider the following game:

– if the result is even, you win 10 ;

– if the result is odd, you win 20 .

This game can be modeled using the random variable defined by:

This mapping is a random variable since for any B 10 20 we have - фото 96

This mapping is a random variable, since for any B10 20 we have and all these events are in Ω - фото 97({10, 20}), we have

and all these events are in Ω DEFINITION 110 - фото 98

and all these events are in картинка 99(Ω).

картинка 100

DEFINITION 1.10.– The distribution of a random variable X defined on (Ω, Martingales and Financial Mathematics in Discrete Time - изображение 101, ℙ) taking values in ( E , ε ) is the mapping ℙ X: ε → [0, 1] such that, for any B ∈ ε,

Martingales and Financial Mathematics in Discrete Time - изображение 102

The distribution of X is a probability distribution on ( E , ε ) ; it is also called the image distribution ofby X .

DEFINITION 1.11.– A random real variable is discrete if X (Ω) is at most countable. In other words, if X (Ω) = x i, iI , where I ⊂ ℕ . In this case, the probability distribution of X is characterized by the family

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x