Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

96 89

97 90

98 91

99 92

100 93

101 95

102 96

103 97

104 98

105 99

106 100

107 101

108 102

109 103

110 104

111 105

112 106

113 107

114 108

115 109

116 110

117 111

118 112

119 113

120 114

121 115

122 116

123 117

124 118

125 119

126 120

127 121

128 122

129 123

130 124

131 125

132 126

133 127

134 128

135 129

136 130

137 131

138 132

139 133

140 134

141 135

142 136

143 137

144 138

145 139

146 140

147 141

148 142

149 143

150 144

151 145

152 146

153 147

154 148

155 149

156 150

157 151

158 152

159 153

160 154

161 155

162 156

163 157

164 158

165 159

166 160

167 161

168 162

169 163

170 164

171 165

172 166

173 167

174 168

175 169

176 170

177 171

178 172

179 173

180 174

181 175

182 176

183 177

184 178

185 179

186 180

187 181

188 182

189 183

190 184

191 185

192 186

193 187

194 188

195 189

196 190

197 191

198 192

199 193

200 194

201 195

202 196

203 197

204 198

205 199

206 200

207 201

208 202

209 203

210 204

211 205

212 206

213 207

214 208

215 209

216 210

217 211

218 212

219 213

220 214

221 215

222 216

Series EditorNikolaos Limnios

Martingales and Financial Mathematics in Discrete Time

Benoîte de Saporta

Mounir Zili

First published 2021 in Great Britain and the United States by ISTE Ltd and - фото 1

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

27-37 St George’s Road

London SW19 4EU

UK

www.iste.co.uk

John Wiley & Sons, Inc.

111 River Street

Hoboken, NJ 07030

USA

www.wiley.com

© ISTE Ltd 2021

The rights of Benoîte de Saporta and Mounir Zili to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2021944040

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-669-2

Preface

The authors owe a lot to many people and institutions who have contributed in diverse ways to this book. Most of the material presented in this book was used in various courses at different levels and for different audiences, being constantly amended and improved based on the feedback received from colleagues and students.

About half of these chapters were initially designed for students studying Financial Engineering as part of their MIMSE master’s program (Engineering Mathematics, Statistics and Economics), created in 2007 and jointly offered by the Universities of Bordeaux 1, Bordeaux 2 and Montesquieu Bordeaux IV, which then merged to form the present-day University of Bordeaux. The students who took this course were awarded their bachelor’s either in economics or mathematics. Some parts of this course benefited from the experience of and collaboration with other professors such as François Dufour and Christine Marois.

Some chapters in this book are also the results of notes created by a group of teachers on stochastic processes, which were given to students, from 2013 onward, undergoing the course Mathematics and applications as part of their Research Masters under the Faculty of Science in the University of Monastir. In the framework of this stream, and following the initiative of Ali Gannoun and Leila Ben Abdelghani Bouraoui, the course material at Montpellier was also adapted in 2017 for another unit that taught Financial Mathematics in the Faculty of Science at Monastir.

Other chapters were first designed to be a part of the Stochastic Processes course in the Biostatistics and Mathematics of Information and Decision-Making streams in the Masters in Mathematics offered by the University of Montpellier.

The authors extend their warmest gratitude to all the people and institutions who have contributed to the creation of this book.

The authors wish to dedicate this work to Leila Ben Abdelghani Bouraoui and Ali Gannoun.

Benoîte DE SAPORTA

Mounir ZILI

August 2021

Introduction

Ever since the work of Black-Scholes-Merton [BLA 73] in 1973, the design, analysis and development of complex financial products and services have required not only an ever-greater understanding of financial theories but also a mastery of probability theory and stochastic processes.

This book introduces basic concepts of this theory, especially that of discrete-time martingales. It shows how this concept can be applied to the pricing and hedging of derivatives in financial markets. There are many texts in the existing literature that focus on financial mathematics and the evaluation of options, for example [LAM 97, SHR 04, VIN 04]. The majority of these texts consider only continuous-time models and make extensive use of Itô calculus. A few rare books such as [SHR 03] introduce discrete-time studies, but this is also done to prepare readers to understand continuous-time financial markets. The most unique feature of this book is that it is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. The only pre-requisite for this book is a basic understanding of probability. Several theoretical and numerical aspects are studied in this book, explored through multiple examples and exercises for which complete solutions are provided.

To the best of the authors’ knowledge, this book is the first reference to include both mathematical teaching with multiple exercises that have detailed solutions, focusing on discrete martingales and their application to financial markets, and practical work with solutions, using the software R. Special attention is paid to the Cox, Ross and Rubinstein model in discrete time.

This book is meant for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, professionals working in the various finance sectors, or any other person who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics or the application of the martingale theory in finance. Finally, the practical work on optimal portfolio management in Chapter 5, as well as the study of American options in Chapter 7, may serve as an elementary introduction to stochastic control problems.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x