Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This book is arranged as follows: Chapter 1reviews the basic concepts and notations in probability and random variables, especially discrete variables, and also provides an introduction to the concept of stochastic processes. Chapter 2is dedicated to the introduction and study of the concept of conditional expectation, a key concept in the definition of martingales and the computation of financial options. Chapter 3aims to introduce an interesting example of stochastic process, namely a simple symmetric random walk, with minimal formalism. This chapter may be read as a standalone chapter. Chapter 4defines and characterizes the concept of a martingale in discrete time and studies certain properties.

From Chapter 5onward, we focus on financial mathematics, strictly speaking. We define essential financial vocabulary such as the concept of a financial asset, investment strategy and the concept of arbitrage. We also begin to establish a link with martingales. We also introduce a typical example of a discrete financial market: the Cox, Ross and Rubinstein binomial model, which acts as a guiding thread through all the following chapters. In particular, the question of Optimal Portfolio Management in this model is studied through guided work. This is a discretized version of the famous Merton problem, originally posed in the continuous Black and Scholes [MER 69] model. Chapter 6introduces and studies the first large and specific category of conditional assets, i.e. European options. This is the simplest example of a financial asset which may be exercised subject to the realization of a certain condition. We examine, in detail, the question of the pricing and hedging of these options in the general case of a discrete financial market and then in the specific case of the Cox, Ross and Rubinstein model. Chapter 7is dedicated to the study of a slightly more complex family of conditional assets: American options. We once again undertake a detailed study of the question of the pricing and hedging of these options and connect them to the theory of optimal stopping, in the general case of a discrete financial market and then in the specific case of the Cox, Ross and Rubinstein model.

The detailed solution to all the exercises and practical work are given together at the end of the book in Chapter 8.

1

Elementary Probabilities and an Introduction to Stochastic Processes

This chapter reviews the basic concepts related to probability and random variables which will be useful for the rest of this text. For a more detailed explanation as well as demonstrations, the readers may refer to [BAR 07, DAC 82, FOA 03, OUV 08, OUV 09] in French and [BIL 12, CHU 01, DUR 10, KAL 02, SHI 00] in English. The readers who are already familiar with these concepts may proceed straight to section 1.3, which introduces the concept of stochastic processes.

This chapter begins with a brief summary of the concepts of a σ -algebra in section 1.1. These concepts will help in understanding the construction of the properties of conditional expectation in Chapter 2. We then study the chief definitions and properties of random variables and their distribution in section 1.2. There is an emphasis on discrete random variables as this entire book essentially studies discrete cases. Section 1.3defines a stochastic process, which is the main subject studied in this book. Finally, there are exercises in handling these different concepts in section 1.4. The solutions are given in Chapter 8.

Throughout the rest of the text, Ω is a non-empty set and Martingales and Financial Mathematics in Discrete Time - изображение 2(Ω) denotes the set of the subsets of Ω :

Martingales and Financial Mathematics in Discrete Time - изображение 3

The set Ω is called the universeor the fundamental set. In practice, the set Ω contains all the possible outcomes of a random experiment.

1.1. Measures and σ -algebras

Let us start by reviewing the concept of a σ -algebra.

DEFINITION 1.1.– A subset картинка 4 of картинка 5(Ω) is a σ-algebra over Ω if

1 1) Ω ∈ ;

2 2) is stable by complementarity: for any A ∈ , we have Ac ∈ , where Ac denotes the complement of A in Ω: Ac = Ω\A;

3 3) is stable under a countable union: for any sequence of elements (An)n∈ℕ of , we have

Elements of a σ-algebra are called events .

EXAMPLE 1.1.– The set картинка 6= {∅, Ω} is a σ-algebra and is also the smallest σ-algebra over Ω ; it is called the trivial σ-algebra. Indeed , is in fact a σalgebra since Ω and by creating unions of and Ω we always - фото 7 is in fact a σ-algebra since Ω ∈ and by creating unions of and Ω we always obtain or Ω - фото 8 and by creating unions ofand Ω we always obtain ∅ ∈ картинка 9 or Ω ∈ картинка 10 . Further, for any other σ-algebra картинка 11 , we clearly have картинка 12картинка 13.

картинка 14

EXAMPLE 1.2.– The set картинка 15(Ω) is the largest σ-algebra over Ω ; it is called the largest σ-algebra. Indeed, by construction , картинка 16(Ω) contains all the subsets of Ω , and thus it contains in particular Ω and it is stable by complementarity and under countable unions. In addition, any other σ-algebra картинка 17 over Ω is clearly included in картинка 18(Ω).

картинка 19

DEFINITION 1.2.– Let Ω be a non-empty set and картинка 20 be a σ-algebra over Ω . The couple (Ω, картинка 21) is called a probabilizable space .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x