Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time

Здесь есть возможность читать онлайн «Benoîte de Saporta - Martingales and Financial Mathematics in Discrete Time» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Martingales and Financial Mathematics in Discrete Time: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Martingales and Financial Mathematics in Discrete Time»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time.<br /><br />The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors.<br /><br /><i>Martingales and Financial Mathematics in Discrete Time</i> is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance

Martingales and Financial Mathematics in Discrete Time — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Martingales and Financial Mathematics in Discrete Time», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Among the elementary properties of σ -algebra, we can cite stability through any intersection (countable or not).

PROPOSITION 1.1.– Any intersection of σ-algebras over a set Ω is a σ-algebra over Ω.

PROOF.– Let ( картинка 22 i) i∈Ibe any family of σ -algebra indexed by a non-empty set I . Thus,

– first of all, for any i, Ω ∈ i, thus Ω ∈ ∩i∈Ii;

– secondly, if A ∈ ∩i∈I i, then for any i, A ∈ i. As these are σ-algebras, we have that for any i, Ac ∈ i, thus Ac ∈ ∩i∈I i;

– finally, if for any n ∈ ℕ, An ∈ ∩i∈I i, then for any i, n, An ∈ i. As these are σ-algebras, we have that for any i, ∪n∈ℕAn ∈ i, thus

Martingales and Financial Mathematics in Discrete Time - изображение 23 картинка 24

It is generally difficult to make explicit all the events in a σ -algebra. We often describe it using generating events.

DEFINITION 1.3.– Let ε be a subset of картинка 25(Ω) . The σ-algebra σ (ε) generated by ε is the intersection of all σ-algebras containing ε . It is the smallest σ-algebra containing ε . ε is called the generating system of the σ-algebra σ ( ε ).

It can be seen that σ (ε) is indeed a σ -algebra, being an intersection of σ -algebras.

EXAMPLE 1.3.– If A ⊂ Ω , then, σ ( A ) = {∅, Ω , A, A c} is the smallest σ-algebra Ω containing A .

картинка 26

EXAMPLE 1.4.– If Ω is a topological space, the σ-algebra generated by the open sets of Ω is called the Borel σ-algebra of Ω . A Borel set is a set belonging to the Borel σ-algebra. On ℝ, картинка 27(ℝ) generally denotes the σ-algebra of Borel sets. It must be recalled that this is also the σ-algebra generated by the intervals, or by the intervals of the form ] − ∞ , x ] , x ∈ ℝ . Thus, there is no unicity of the generating system .

картинка 28

We will now recall the concept of the product σ -algebra.

DEFINITION 1.4.– Let ( E i, i iℕ be a sequence of measurable spaces Let n ℕ The σalgebra defined - фото 29 i) i∈ℕ be a sequence of measurable spaces .

– Let n ∈ ℕ. The σ-algebra defined over and generated by

is denoted by 0 n and it is called the product - фото 30

is denoted by картинка 31 0⊗ ... ⊗ n and it is called the product σalgebra over We have in particular In - фото 32 n , and it is called the product σ-algebra over We have, in particular ,

In the specific case where E 0 E n E and 0 - фото 33

In the specific case where E 0= ... = E n= E and 0 n we also write We use iℕi to denot - фото 34 0= ... = n we also write We use iℕi to denote the σalgebra over the countable - фото 35 n= , we also write

We use iℕi to denote the σalgebra over the countable product space - фото 36

– We use ⊗i∈ℕi to denote the σ-algebra over the countable product space generated by the sets of the form where Ai ∈ i and Ai = Ei except for a finite number of indices i. In the specific case where, for any and i = , the product space is denoted by Eℕ, and the σ-algebra ⊗i∈ℕi is denoted by ⊗N.

Finally, let us review the concepts of measurability and measure.

DEFINITION 1.5.– Let Ω be non-empty set and картинка 37 be a σ-algebra on Ω.

– A measure over a probabilizable space (Ω, ) is defined as any mapping μ defined over , with values in [0, +∞] = ℝ+ ∪ {+∞}, such that μ(∅) = 0 and for any family (Ai)i∈ℕ of pairwise disjoint elements of , we have the property of σ-additivity:

– A measure μ over a probabilizable space (Ω, ) is said to be finite, or have finite total mass, if μ(Ω) < ∞.

– If μ is a measure over a probabilizable space (Ω, ), then the triplet (Ω, , μ) is called a measured space.

DEFINITION 1.6.– Let (Ω, картинка 38) and ( E , ε ) be two probabilizable spaces. A mapping X, defined over Ω taking values in E, is said to be ( Martingales and Financial Mathematics in Discrete Time - изображение 39, ε ) -measurable, or just measurable, if there is no ambiguity regarding the reference σ-algebras, if

Martingales and Financial Mathematics in Discrete Time - изображение 40

In practice, when E ⊂ ℝ, we set ε = картинка 41( E ) the set of Borel subsets of E , that is, the set of subsets of E . We can simply say that X is картинка 42-measurable. When, in addition, we manipulate a single σ -algebra картинка 43over Ω, it can be simply said that X is measurable. If we work with several σ -algebras over Ω, the concerned σ -algebra must always be specified: X is картинка 44-measurable.

EXAMPLE 1.5.– If (Ω, is a measurable space and A then the indicator function is - фото 45) is a measurable space and A ∈ , then the indicator function

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Martingales and Financial Mathematics in Discrete Time»

Представляем Вашему вниманию похожие книги на «Martingales and Financial Mathematics in Discrete Time» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Martingales and Financial Mathematics in Discrete Time»

Обсуждение, отзывы о книге «Martingales and Financial Mathematics in Discrete Time» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x