Fig. 4.7 Ejecución esquemática de un sacádico.
Contribución de los movimientos sacádicos en la lectura
Por su gran importancia en el aprendizaje y el uso que de ellos hacemos constantemente, los movimientos oculares en la lectura son unos de los más estudiados por fisiólogos, psicólogos y optometristas (Montes, Ferrer, 2002). Los registros que se pueden obtener con cierta facilidad dan como resultado unas grá-ficas duración vs. amplitud de los movimientos con un aspecto típico de escalera ( fig. 4.8): los escalones son las fijaciones de comprensión lectora y las rampas son los movimientos sacádicos (las rampas bruscas son los saltos de línea).
Fig. 4.8 Representación amplitud vs. duración de los movimientos de lectura de un párrafo (ver texto para detalles numéricos sobre las condiciones de contorno). F representa la fijación, S un mini-salto sacádico y Sʼ el salto sacádico de cambio de línea.
Consideremos pues el ejemplo siguiente (el de la figura 4.8): la lectura de un párrafo de 20 líneas de anchura a = 16.1 cm a una distancia d = 30 cm; el tiempo total de lectura ha sido de 70 s y el número total de movimientos sacádicos registrados ha sido de 119. Con estos datos, tenemos que la amplitud máxima, la que marca la anchura del texto, vale A = 2·arctg ( a /(2 d )) = 30 deg. El número de fijaciones sacádicas por línea de párrafo es de (119 + 1)/20 = 6, es decir, con saltos de 5 en 5 grados de amplitud. Con estas condiciones, la duración media de cada fijación sacádica es de 70/(119 + 1) = 583.3 ms, pero, aplicando los datos del ejemplo anterior ( d y D 0), la duración del movimiento sacádico es de 39 ms, lo cual significa que se dedica 10 veces más de tiempo a la comprensión lectora del texto que al salto de palabras en palabras.
4.4.2 Movimientos de seguimiento
Son movimientos oculares de seguimiento rotacional rápido, mucho más rápidos que los movimientos optocinéticos (OKN). Los primeros sí que tienen un estímulo de fijación claro, mientras que los últimos no. Participan en una amplia variedad de circunstancias oculomotoras, como mantener la mirada ante derivas involuntarias del ojo o la regulación de la fijación durante los movimientos vergenciales, por lo que, la disfunción del sub-sistema oculomotor de seguimiento o persecución puede subyacer en la causa de numerosas anomalías oculomotoras como el nistagmus latente , nistagmus espontáneo , etc. (Rabbets, 1998: 184; Von Noorden, 1996).
Después del estado transitorio, durante su tiempo de reacción correspondiente, el seguimiento de los ojos a un estímulo móvil es casi mimético hasta que la velocidad del estímulo es muy elevada ( > 100 deg/s). En estas condiciones estacionarias, la velocidad de seguimiento del ojo es aproximadamente el 90 % de la velocidad del objeto.
4.4.3 Vergencias
Son movimientos binoculares en los que se varía el ángulo de cruce de los ejes visuales. Si el ángulo aumenta, el movimiento se denomina convergencia ; si el ángulo disminuye, se denomina divergenci a. Estos movimientos oculares, como los sacádicos y los de seguimiento, se utilizan para alinear las fóveas de los dos ojos sobre el objeto de interés, cualquiera que sea la distancia del mismo. Para un objeto en infinito, los ejes visuales de los dos ojos deben estar paralelos (vergencia nula); para objetos más cercanos, los ojos deben converger ( fig. 1.5). Probablemente, la cualidad principal de la vergencia en los seres humanos es la gran sensibilidad estereoscópica que nos permite notar minúsculos desplazamientos de profundidad entre objetos.
Al tratarse de movimientos binoculares, se analizarán más exhaustivamente en los capítulos siguientes; en concreto, los aspectos dinámicos en el capítulo 5 y los aspectos óptico-geométricos en el capítulo 6, aunque a partir de ahora su uso será cada vez mayor a lo largo de esta monografía.
4.5 Micromovimientos de fijación
Son conocidos como micromovimientos por su pequeña amplitud, o nistagmus fisiológico por ser de carácter oscilatorio; pero no por ello son movimientos oculares anómalos. Su función es mantener la fijación e impedir el fenómeno fading (
fig. 4.1), aunque es posible que estén involucrados en otros procesos de visión cuya finalidad se desconoce todavía. Parecen estar relacionados también con el mecanismo de la acomodación. Permiten, en suma, que el sistema visual esté en las mejores condiciones dinámicas para tener una AV máxima. Destacan tres tipos de micromovimientos:
a) Trémores: son temblores de los ojos, de muy pequeña amplitud, entre 17" y 1ʼ, y de altísima frecuencia, entre 30 y 75 ciclos/s.
b) Fluctuaciones: son de mayor amplitud (5ʼ) y frecuencia más baja (unos 5 ciclos/s).
c) Microsacádicos: son los micromovimientos de mayor amplitud, entre los 5 y 10ʼ de arco, con una velocidad media de 10°/s.
4.6 Métodos de medida de los movimientos oculares
Aunque las técnicas de medida de los movimientos oculares pueden verse renovadas continuamente debido a nuevos recursos tecnológicos, las hemos dividido del modo siguiente:
a) Observación directa: es el método clínico más habitual. Se basa en la observación del movimiento por parte del examinador. Tiene como principal inconveniente que es un método cualitativo, que no permite la medida y que mediante él es muy difícil observar los movimientos de baja amplitud o alta frecuencia.
b) Videofotográficos: antiguamente se hacía uso de sistemas estroboscópicos para poder fotografiar los movimientos. Hoy en día se hace uso de sistemas de vídeo. Las secuencias de vídeo de alta velocidad pueden ser luego estudiadas mediante sistemas informáticos para conocer los movimientos que realiza el ojo.
c) Electro-oculográfico: es el sistema más usado ( fig. 4.9). Se basa en la existencia de una diferencia de potencial de unos 20 mV entre la córnea y la esclera, comportándose como un dipolo. Si se colocan electrodos en los laterales del ojo y párpados, es posible registrar los cambios de potencial eléctrico y, de ahí, deducir los movimientos que ha hecho el ojo. Su principal inconveniente es que están muy influenciados por los campos eléctricos del entorno, por lo que se necesita aislar cuidadosamente al sujeto cuando se quiere mucha exactitud y precisión. Aún así, su ventaja principal es que es un sistema independiente de los movimientos de la cabeza.
Fig. 4.9 Método electro-oculográfico de registro de movimientos oculares.
d ) Métodos fotoeléctricos: están basados en la reflexión de un haz de luz sobre la córnea ( fig. 4.10). Son muy poco exactos, ya que se ven afectados por los movimientos de la cabeza, por lo que ésta debe fijarse.
Fig. 4.10 Métodos fotoeléctrico (izquierda) y con lentes de contacto (derecha) para el registro de movimientos oculares.
e) Con lentes de contacto: se usa una lente de contacto especial, con unas zonas espejadas y se registra mediante vídeo el movimiento ( fig. 4.10). Los principales problemas se asocian al movimiento de la lentilla, que evita que se puedan registrar movimientos muy rápidos.
Читать дальше