Handbook of Biomass Valorization for Industrial Applications

Здесь есть возможность читать онлайн «Handbook of Biomass Valorization for Industrial Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Biomass Valorization for Industrial Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Biomass Valorization for Industrial Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

HANDBOOK
BIOMASS VALORIZATION
INDUSTRIAL APPLICATIONS
The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors.
Audience Handbook of Biomass Valorization for Industrial Applications

Handbook of Biomass Valorization for Industrial Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Biomass Valorization for Industrial Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table 4.3 Performance of different carbon catalysts for different valorization processes.

S. N. Name of catalyst Source of catalyst Type of process Reactant Glycerol derivatives Conversion of glycerol (%) Selectivity (%) Ref.
1. TC-L carbon Rice husk Esterification Acetic acid DAG + TAG 90 90 [37]
2. TC-L carbon Rice husk Etherification TBA DTBG + TTBG 53 25 [37]
3. TAC-673 Sucrose Esterification Acetic acid TAG <99 50 [27]
4. AC-SA5 Activated carbon Acetylation Acetic acid DAG + TAG 91 62 [34]
5. PW2-AC Activated Carbon Esterification Acetic acid Diacetin 86 63 [35]
6. SHTC D-glucose Esterification Acetic acid Mono acetin 70 89 [28]
7. SO 3H-C, Cellulose Acetalization Acetone Solketal 80 100 [29]
8. SO 3H-carbon Glycerol Esterification Acetylation Acetic acid, Acid anhydride TAG 100 100 [34]
9. SO 3H-glycerol-carbon Glycerol Acetylation Acetic acid TAG 100 100 [40]
10. [PrSO 3HN] [SO 3CF 3]/C Glucose Esterification Acetic acid Lauric acid TAG, MLG and DLG [32]
11. GBCC Crude glycerol Esterification Acetic acid DAG + TAG 99 88 [39]
12. Sulfonated carbon Catkins from willow Esterification Acetic acid DAG 98.4 54.5 [38]
13. CX Glucose Acetylation Acetic acid DA + TA 97 75 [26]
14. Sulfonated Peanut Shell Peanut shell, Etherification Isobutylene DTBGs + TTBG 100 92.1 [51]
15. SCC-S Agroindustrial Wastes Etherification TBA DTBG + TTBG 80 21.3 [54]
16. Sulfonated carbon Sugar Etherification tert-butanol Mono and di-glyceryl [33]
17. BCC-SF Coffee ground wastes Etherification TBA MTBG 42 [53]
18. Au/AC Activated carbon Oxidation DIHA 72 18 [47]
19. Au/MWCNT Multi-walled carbon nanotubes Oxidation DIHA 93 60 [47]
20. 10%Pd/C Activated carbon Oxidation Lactic acid 99 68 [48]
21. 5% Pt/C Activated carbon Oxidation Lactic acid 99 74 [48]
22. 0.5%Cu–1.0% Pt/AC Activated carbon Oxidation Lactic acid 80 69.3 [49]
23. Pt/AC Activated carbon Oxidation Lactic acid 100 69.3 [50]
24. 10%HSiW/AC Activated carbon dehydration Acrolein 92.6 75.1 [56]

Scheme 44 Steps for the formation of TAG using SO 3HC derived from glycerol - фото 23

Scheme 4.4 Steps for the formation of TAG using SO 3H-C derived from glycerol [30].

Malaika and co-workers have prepared SO 3H-modified carbon xerogels and spheres using glucose as a carbon source. These catalysts were explored for acetylation of glycerol and the optimum catalyst shows 75% selectivity for both diacetin (DA) and triacetin (TA), and almost complete glycerol conversion (About 97%). The results are comparable with commercially available ion exchange resin (Amberlyst 15) [26].

Ellis and coworkers have investigated the use of sulfonated carbon catalysts for transesterification and esterification reactions of glycerol. The active catalyst was synthesized by pyrolysis and sulfonation of the sugar char in a tube furnace. The reaction of glycerol with tert -butanol over sulfonated carbon leads to the formation of mono-glyceryl ethers isomers and di-glyceryl ether isomers [33].

Khayoon et al . have explored the potential of sulfated activated carbon catalysts (AC-SA5) for the transformation of glycerol into oxygenated fuel additives by glycerol acetylation. The AC-SA5 was prepared by functionalization of activated carbon with sulfuric acid by hydrothermal method. The catalyst shows 92% of the glycerol conversion into mono, di, and triacetyl glyceride with 38, 28, and 34% selectivity, respectively in a batch run. The catalyst shows good stability up to four consecutive steps [34].

Figure 47 Selective glycerol esterification with acetic acid and lauric acid - фото 24

Figure 4.7 Selective glycerol esterification with acetic acid and lauric acid over [PrSO 3HN][SO 3CF 3]/C nanorods [32].

The glycerol transformation to monoacetin, diacetin, and triacetin over heteropolyacids modified activated carbon was investigated by Castanheiro and co-workers. The activity of the catalyst enhances with an increase in the loading of dodecatungstophosphoric acid (PW) on the surface of activated carbon. The maximum catalytic activity was observed for the catalyst with 4.9% loading. On further increasing the loading the activity decreases due to the blockage in the pores of activated carbon. The catalyst is stable up to three consecutive batch runs [35]. Wang et al . have explored the benefits of sulfonated hollow sphere carbon for acetylation of glycerol. Sulfonic groups modified hollow sphere carbon (HSC-SO 3H) has been prepared by carbonization of SiO 2core–shell polymer which was followed by elimination of the SiO 2core and functionalization with chlorosulfonic acid. The catalyst exhibits better activity for glycerol acetylation owing to the microporous structure which allows fast mass transfer during the reaction [36]. Rice husk-derived sulfonated carbon has been used as a potential catalyst for etherification and esterification of glycerol. The catalyst was synthesized by carbonization of rice husk followed by treatment with H 2SO 4. Glycerol esterification with acetic acid exhibits about 90% transformation to mono-, di-, and triglycerides with the selectivity of 11, 52, and 37% respectively after 5 h of reaction. The glycerol etherification with tert-butyl alcohol (TBA) shows a 53% conversion to di and tri tert-butylglycerol with 25% selectivity. The key role for promoting the activity of the catalyst was played by the Bronsted acidic sites and hydrophilicity which helps in preventing the catalyst deactivation [37]. The catalyst activity for various glycerol conversions depends upon the preparation methods. The effect of sulfonation on biomass-derived carbon catalyst was studied by Tao et al . [38]. The active catalyst was synthesized by sulfonation of carbonized catkins from the willow plant using different sulfonation conditions. It was found that the sulfonation conditions affect the density of acidic sites. The resulted catalyst exhibits almost complete transformation of glycerol in the presence of acetic acid into MAG, DAG, and TAG in 2 h at 393K. Compared to a similar kind of catalyst reported in the literature, this catalyst exhibits superior heat stability, recyclability, and water tolerance. Crude glycerol from biodiesel industries has been utilized for the conversion of glycerol into valuable products as well as for catalyst preparation. Hameed and coworkers have prepared solid acid catalyst by carbonization and sulfonation of biodiesel-derived crude glycerol. The catalyst shows almost complete conversion (99%) of glycerol with acetic acid into oxygenated fuel additives (DAG and TAG) and MAG. The catalyst is stable and can be used for up to seven cycles without appreciable loss in its performance. The catalyst has the potential for industrial conversion of crude glycerol at ambient reaction conditions [39]. Similarly, Karnjanakom and coworkers have prepared a sulfonated carbon-based catalyst by in situ carbonization and sulfonation. The ultrasound-assisted glycerol acetylation with acetic acid over this catalyst exhibits 100% selectivity towards the formation of TAG. The catalyst is highly stable and can be used effectively for ten repeated cycles. The presence of acidic sites along with ultrasound radiation contributes towards 100% selectivity for TAG [40].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Biomass Valorization for Industrial Applications»

Представляем Вашему вниманию похожие книги на «Handbook of Biomass Valorization for Industrial Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Biomass Valorization for Industrial Applications»

Обсуждение, отзывы о книге «Handbook of Biomass Valorization for Industrial Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x