Smart Systems for Industrial Applications

Здесь есть возможность читать онлайн «Smart Systems for Industrial Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Smart Systems for Industrial Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Smart Systems for Industrial Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SMART SYSTEMS FOR INDUSTRIAL APPLICATIONS
The prime objective of this book is to provide an insight into the role and advancements of artificial intelligence in electrical systems and future challenges.
Audience

Smart Systems for Industrial Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Smart Systems for Industrial Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Mutation is the process in which the values of gene are altered. The gene to be mutated are curtained by the mutation parameter. Mutation results in the generation of novel features in the offspring. Occasionally, the feature may lead the offspring to be poor or superior. Figure 2.5exhibits the mutation phase.

Figure 25 Mutation 252 GA Parameter Tuning GA execution involves tuning - фото 30

Figure 2.5 Mutation.

2.5.2 GA Parameter Tuning

GA execution involves tuning of three parameters, namely, crossover probability, mutation probability, and the number of optimal generations. The population evolution depends on crossover and mutation whereas number of generations are chosen such that the solution is an optimal one. Studies had been carried out with crossover probability ranging between 0.2 and 0.1. Its corresponding mutation probability is taken as 0.4, and hence, maximum fitness is reached. Figures 2.6and 2.7show the results of GA tuning.

Figure 26 Fitness with crossover probabilities Figure 27 Fitness with - фото 31

Figure 2.6 Fitness with crossover probabilities.

Figure 27 Fitness with mutation probabilities 26 Simulation Results and - фото 32

Figure 2.7 Fitness with mutation probabilities.

2.6 Simulation Results and Discussion

2.6.1 MATLAB Genetic Algorithm Tool Box

MPLAB established by Microchip Technology is an exclusive integrated software setting for the improvement of applications in PIC microcontrollers. MPLABX is the state-of-the art edition of MPLAB, developed on the Net Beans platform. They support project management, code editing, debugging, and programming of Microchip 8-bit PIC and AVR (including ATMEGA) microcontrollers, 16-bit PIC24 and dsPIC microcontrollers, as well as 32-bit SAM (ARM) and PIC32 (MIPS) microcontroller ( Figure 2.8).

GA finds its extensive application in control engineering. MATLAB has an integrated GA toolbox which helps the control engineers to apply genetic search methods effectively. Figure 2.9is the GA toolbox in finding solution to control system design problems.

2.6.2 Simulation Results

A high level matrix language containing M file with MATLAB code is developed to set the five parameters for position control of the piston. The software is analyzed for different values of reference input and the characteristics graph are taken down with the gain of Kp, Ki, and Kd.

Figure 28 Flowchart of genetic algorithm 2621 Reference 500 Error - фото 33

Figure 2.8 Flowchart of genetic algorithm.

2.6.2.1 Reference = 500 (Error)

When the reference value is set as 500 and the Kp, Ki, and Kd values are taken manually (10, 0.5, and 3) without using GA, then the output will be coming as follows. Figures 2.10, 2.11and 2.12shows the control error, control action and system output.

Figure 29 Genetic algorithm tool box Figure 210 Control error - фото 34

Figure 2.9 Genetic algorithm tool box.

Figure 210 Control error Figure 211 Control action - фото 35

Figure 2.10 Control error.

Figure 211 Control action Figure 212 System output Figures 213 a band - фото 36

Figure 2.11 Control action.

Figure 212 System output Figures 213 a band c shows the piston - фото 37

Figure 2.12 System output.

Figures 2.13 a, band c shows the piston displacement at a reference = 500 (error) using Kp = 10, Ki = 0.5 and Kd = 3 without GA.

Figure 213 a Control error for reference value 500 error Figure 213 - фото 38

Figure 2.13 (a) Control error for reference value 500 (error).

Figure 213 bControl action for reference value 500 error Figure 213 - фото 39

Figure 2.13 (b)Control action for reference value 500 (error).

Figure 213 cSystem output for reference value 500 error Here the - фото 40

Figure 2.13 (c)System output for reference value 500 (error).

Here, the displacement of the piston is not settled at a reference value. Hence, this output is considered as error. To rectify this, we use GA.

2.6.2.2 Reference = 500

When the reference value is set as 500 and the Kp, Ki, and Kd values are taken by execution of iterations in GA, then the error is minimized and the displacement is settled at the reference value in the output as shown in Figures 2.14a, band c.

The Kp, Ki, and Kd values obtained by GA are 0.221923828125,1.32339 6901967211, and 0.12735267270242523.

2.6.2.3 Reference = 1,500

When the reference value is set as 1,500 and the Kp, Ki, and Kd values are taken by execution of iterations in GA, then the error is minimized and the displacement is settled at the reference value in the output as shown in Figures 2.15 a, band c.

The Kp, Ki, and Kd values obtained by GA are 0. 38281, 0.19672, and 0.24252.

Figure 214 a Control error for reference value 500 Figure 214 bControl - фото 41

Figure 2.14 (a) Control error for reference value 500.

Figure 214 bControl action for reference value 500 Figure 214 - фото 42

Figure 2.14 (b)Control action for reference value 500.

Figure 214 cSystem output for reference value 500 error Figure 215 a - фото 43

Figure 2.14 (c)System output for reference value 500 (error).

Figure 215 a Control action for reference value 1500 Figure 215 - фото 44

Figure 2.15 (a) Control action for reference value 1,500.

Figure 215 bControl action for reference value 1500 Figure 215 - фото 45

Figure 2.15 (b)Control action for reference value 1,500.

Figure 215 cSystem output for reference value 1500 Table 21 Analysis - фото 46

Figure 2.15 (c)System output for reference value 1,500.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Smart Systems for Industrial Applications»

Представляем Вашему вниманию похожие книги на «Smart Systems for Industrial Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Smart Systems for Industrial Applications»

Обсуждение, отзывы о книге «Smart Systems for Industrial Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x