1 ...6 7 8 10 11 12 ...17
Der glycolytische Reaktionsweg (Glycolyse)
Wenn Sie oben bei Abbildung 2.1beginnen, können Sie sehen, dass Glucose (der kleinste Baustein eines Kohlehydrats oder Zuckers) im Zentrum des Prozesses der sogenannten »Glycolyse« steht. Die Glycolyse bildet den Anfang der Zellatmung, und dazu ist etwas Energie (ATP) notwendig. Zwei Moleküle ATP werden für die Glycolyse benötigt. Obwohl während der 10 Teilschritte der Reaktion vier ATP-Moleküle gebildet werden (ich erspare Ihnen hier nähere Details), bleiben netto nur zwei Moleküle übrig (da schon zu Beginn der Glycolyse zwei Moleküle ATP »ausgegeben« werden müssen). Zudem entsteht neben den zwei ATP-Molekülen Pyruvat. Das Pyruvat ist die Substanz, die im aeroben Reaktionsweg des Citratzyklus’ die Hauptrolle spielt und für die Umsetzung von Glucose in ATP zuständig ist.
Zwei Pyruvat-Moleküle werden im Citratzyklus verbraucht, der als »aerober Reaktionsweg« bezeichnet wird, weil für diesen Zyklus die Anwesenheit von Sauerstoff erforderlich ist. Der Citratzyklus ist einer der großen biologischen Reaktionswege, der nicht nur im menschlichen Organismus, sondern auch in dem aller Tiere und Pflanzen abläuft.
Gelangt Pyruvat in ein Mitochondrium, so verbindet es sich dort mit einem anderen Molekül, dem Nicotinamid-Adenin-Dinukleotid (NAD). NAD +ist ein Elektronenüberträger (ein Molekül, das Energie von einem Molekül auf ein anderes transportieren kann). Bei dieser Reaktion wird Kohlendioxid freigesetzt. NAD +nimmt Elektronen auf und wird zum höher energetischen (reduzierten) Molekül NADH umformt. Das Produkt der Gesamtreaktion heißt »Acetyl-Coenzym A« (»Acetyl-CoA« oder »aktivierte Essigsäure«), ein Kohlenhydratmolekül, das nun in den Citratzyklus eintritt.
Tiefere Einsichten in den Citratzyklus
Durch Abgabe von Wasser wandelt sich Zitronensäure zu cis-Aconit-Säure um. Spaltet sich noch mehr Wasser ab, entsteht Isocitrat. An diesem Punkt kommt der Elektronenüberträger Nicotinamid-Adenin-Dinukleotid (NAD +) ins Spiel und konvertiert Isocitrat zu 2-Oxoglutarat; bei dieser Reaktion werden Kohlendioxid und NADH freigesetzt. Das 2-Oxoglutarat wandelt sich zu Succinyl-Coenzym A durch Reaktion mit NAD +und Coenzym A. Es entsteht wieder Kohlendioxid und NADH. Succinyl-CoA verbindet sich dann mit Guanosindiphosphat (GDP) sowie einem anorganischen Phosphat-Molekül (P i) zu Succinat. CoA und Guanosintriphosphat (GTP) werden freigesetzt. Succinat wird dann zu Fumarat umgewandelt, wenn oxidiertes Flavin-Adenin-Dinukleotid (FAD) dazutritt. FAD ist wie NAD +ein Elektronenüberträger und kann reversibel Elektronen aufnehmen. FAD wird dazu zu FADH 2reduziert. An diesem Punkt des Zyklus reagiert Wasser mit Fumarat (sehen Sie, weshalb Sie genügend Wasser trinken sollten?) zu Malat. NAD +tritt nun auch wieder in den Kreislauf ein und wandelt Malat zu OAA um, wobei wieder NADH entsteht. Nach einem Umlauf des Citratzyklus sind folgende energiegeladene Moleküle entstanden:
drei Moleküle NADH (reduziertes Nicotinamid-Adenin-Dinukleotid)
ein Molekül FADH2 (reduziertes Flavin-Adenin-Dinukleotid)
ein Molekül ATP
Okay, so weit so gut, wir haben immerhin ein Molekül ATP. Aber wenn ATP das einzige Energie-Molekül ist, das der Körper nutzen kann, wie viele ATP-Moleküle bekommt man dann eigentlich noch aus NADH und FADH 2heraus? Lesen Sie weiter! (Hinweis: NADH und FADH 2werden während der oxidativen Phosphorylierung wieder oxidiert. Die in dieser Reaktion frei werdende Energie wird dazu genutzt, ATP zu bilden.)
Zyklen sind Kreisläufe. Die Produkte einer Reaktion sind nötig, um eine andere anzustoßen. Ein Beispiel ist Acetyl-CoA: Es ist ein Produkt des Citratzyklus, doch gleichzeitig ist es auch seine Aufgabe, den Zyklus selbst am Laufen zu halten. Acetyl-CoA und Oxalacetat (OAA) werden zur Zitronensäure verbunden. Am Ende des Zyklus sind aus der Zitronensäure zwei Moleküle CO 2und wieder OAA entstanden; der Zyklus kann erneut durchlaufen werden.
Oxidative Phosphorylierung (auch unter der Bezeichnung »Atmungskette« oder »Elektronentransportkette« bekannt)
NADH und FADH 2werden im Citratzyklus gebildet, wenn ihre oxidierten Pendants (NAD +und FAD) reduziert werden. Wird eine Substanz reduziert, dann nimmt sie Elektronen auf; wird sie oxidiert, verliert sie Elektronen. So sind NADH und FADH 2Substanzen, die Elektronen und somit Energie aufgenommen haben. In der Atmungskette gehen Oxidation und Reduktion Hand in Hand, um Energie zu transportieren. Tatsächlich wird die Atmungskette auch »Elektronentransportkette« genannt. Am Ende der Reaktionskette nimmt der Sauerstoff Elektronen auf und verbindet sich mit Wasserstoff zu Wasser.
Zellen produzieren während des Stoffwechsels Wasser. Etwas Wasser verbleibt für die Temperaturregulierung und einige andere Funktionen im Körper. Etwas mehr Wasser geht beim Ausatmen und Schwitzen verloren. Noch mehr Wasser wird über das Exkretionssystem ausgeschieden. Da der Körper insgesamt mehr Wasser verbraucht, als er bildet, müssen Sie Flüssigkeit zu sich nehmen (etwa 2 Liter täglich).
Wenn NADH und FADH 2die Elektronentransportkette entlang wandern, verlieren sie Energie und nehmen diese wieder auf, während sie oxidiert und reduziert werden, oxidiert und reduziert, oxidiert und … Es klingt ermüdend, oder? Aber alles geschieht für einen guten Zweck. Die Energie, die diese Elektronenträger abgeben, wird genutzt, um ein Molekül Phosphat mit Adenosindiphosphat (ADP) zu unserem wohlbekannten molekularen Energiebündel Adenosintriphosphat ATP zu vereinen. Wie Sie wissen, ist die Herstellung von ATP das ultimative Ziel all dieser mit Energie jonglierenden Prozesse und Kreisläufe. Aus jedem NADH-Molekül, das im Citratzyklus entsteht, können drei Moleküle ATP gewonnen werden. Aus jedem Molekül FADH 2, das aus dem Citratzyklus hervorgeht, können zwei Moleküle ATP generiert werden. Im Laufe des gesamten Prozesses der aeroben Zellatmung (also Glycolyse, Citratzyklus und oxidative Phosphorylierung) werden 36 Moleküle ATP aus jener Energie geschaffen, die in einem einzigen Molekül Glucose enthalten ist. Die Elektronen aus dem NADH oder FADH 2werden am Ende dieser Kette auf Sauerstoff übertragen; es entsteht Wasser.
Manchmal steht kein Sauerstoff zur Verfügung, doch Ihr Körper benötigt trotzdem dringend Energie. Irgendwann ist alles nämlich NAD zu NADH reduziert worden, damit kommt die Glykolyse zum Erliegen. Für diese Notfälle existiert eine Art Rettungssystem, der »anaerobe Reaktionsweg« (»anaerob« bedeutet »ohne Sauerstoff«).
Durch Milchsäuregärung wird der Elektronenakzeptor NAD +wieder hergestellt, sodass die Glycolyse, die ja immerhin zwei Moleküle ATP herstellt, weiterlaufen kann. Der Haken bei der Sache ist neben der geringen ATP-Ausbeute, dass die dabei entstehende Milchsäure später nur aerob, also mit Sauerstoff wieder abgebaut werden kann, falls sie keine Schäden hinterlassen soll (das ist der Grund für so manchen Muskelkater bei untrainierten Menschen, die plötzlich damit beginnen, Sport zu treiben). Außerdem ist die Bereitstellung von NAD +durch die Milchsäuregärung nicht von Dauer, sodass schon nach relativ kurzer Zeit die Glycolyse trotzdem zum Stillstand kommt. Bakterien und Hefen können noch viele andere Formen von Gärungen (hier sei nur an die überaus geschätzte alkoholische Gärung erinnert, bei der nicht Milchsäure, sondern Ethanol entsteht) und auch Formen der anaeroben Atmung – aber in der Hinsicht sind Prokaryoten eben definitiv vielseitiger als wir.
Читать дальше