Der Mensch besitzt so etwa 20.000 Gene, die als doppelter Satz auf insgesamt 46 Chromosomen in jeder »normalen« Zelle Ihres Körpers zu finden sind. Von diesen 46 Chromosomen stammen 23 von Ihrem Vater und 23 von Ihrer Mutter. Jede Geschlechtszelle (Gamet), also Spermium oder Eizelle, besitzt nur 23 Chromosomen (und damit nur ein Gen von jeder Sorte). Bei der Verschmelzung von Eizelle und Spermium entsteht so wieder eine Zelle mit 46 Chromosomen. Aber jede »normale« Zelle in Ihrem Körper (und mit »normal« meine ich eine »somatische Zelle« oder »Körperzelle« in Abgrenzung zur Geschlechtszelle) trägt einen vollen Satz Chromosomen von beiden Elternteilen. Normalerweise sind die Chromosomen in einer sich nicht teilenden Zelle als einzelner DNA-Strang organisiert. Im Zuge der Zellteilung muss sich die DNA im Inneren jedoch replizieren (kopieren), sodass ein ganzer Chromosomensatz für jede der entstehenden Zellen zur Verfügung steht.
DNA und Chromosomen vermehren
Der Sinn der DNA-Replikation (siehe Abbildung 2.2), also der Chromosomenduplizierung, besteht darin, Kopien beider DNA-Stränge herzustellen. Beide Stränge müssen kopiert werden, da sie als Blaupause oder Vorlage (Template) für alle Substanzen Ihres Körpers dienen. Sämtliche zellulären Produkte und Prozesse werden von Genen auf den Chromosomen der DNA kontrolliert. Wenn sich also eine Ihrer Zellen in zwei Tochterzellen teilt (und dies geschieht täglich) oder wenn zwei Zellen verschmelzen, um einen neuen Menschen zu zeugen (dies geschieht periodisch), muss das genetische Material vervielfacht werden. Die genetische Information ist dabei erforderlich, um Entwicklung und Wachstum eines Organismus während des Lebens zu koordinieren.
Während der DNA-Replikation muss die »gewundene Leiter« der Doppelhelix entwirrt und ähnlich wie bei einem Reißverschluss geöffnet werden, sodass die »Leitersprossen« in der Mitte regelrecht auseinanderbrechen. Diese Teilung wird von einem Enzym namens Helicase initiiert; das Ergebnis ist ein Y-förmiges DNA-Molekül mit einem Nukleotid auf dem rechten Strang des Y und einem Nukleotid auf seinem linken Strang (siehe Abbildung 2.2). Eine der beiden Seiten des Original-DNA-Strangs wird zu einem Vorlagen- oder Template-Strang . Ein Template ist eine Matrize oder ein Muster, nach dem etwas Neues aufgebaut wird. Der Template-Strang dient also als Vorlage für den neuen, komplementären Strang.
Komplementärstränge bilden sich an jedem Template-Strang, wenn das Enzym DNA-Polymerase Nukleotide aneinanderreiht, die zum jeweiligen Gegenstück auf dem Template passen. Dabei bilden die vier stickstoffhaltigen Basen Paare: A–T und C–G. Das bedeutet, wo immer die Polymerase ein »A« auf dem Template-Strang erkennt, fügt sie ein »T« an der entsprechenden Stelle im Komplementärstrang ein und so weiter. Dies geschieht immer nur entlang eines kurzen Teilstücks der DNA, denn das gesamte Molekül kann sich nicht auf einmal entwirren und auftrennen. Dieses teilweise geöffnete/geschlossene Gebiet, in dem die Replikation abläuft, wird als »Replikationsgabel« bezeichnet.
Abbildung 2.2: Der Prozess der DNA-Replikation
Die Reihenfolge der Basen ist wichtig, da sie die Gene festlegen, und die Gene wiederum vorgeben, welche Aminosäuren gebildet werden. Die Aminosäuren bestimmen, welches Protein aus ihnen gebildet wird, und Proteine sind, wie Sie inzwischen wissen, essenzielle Bestandteile aller Zellen. Proteine bilden sowohl Zellstrukturen als auch Enzyme, die für lebensnotwendige Vorgänge verantwortlich sind.
Wenn Sie einen Blick auf Abbildung 2.2werfen, können Sie die Zahlen »3’« und »5’« (Lies: »3-Strich« bzw. »5-Strich«) erkennen. Diese Zahlen markieren die Ausrichtung des jeweiligen DNA-Stranges und somit die Richtung der DNA-Replikation: Der Template-Strang wird von 3’ zu 5’ gelesen, während der Komplementärstrang in Richtung 5’ zu 3’ wächst.
Fehler können sich einschleichen, wenn die DNA-Polymerase den Template-Strang abliest und die entsprechenden Basen ans Ende des komplementären Stranges heftet. Wenn die Polymerase zwar ein »A« erkennt, aber trotzdem ein »C« statt ein »T« anbringt, wird die genetische Information verändert und ungenau. Glücklicherweise hat Mutter Natur an alles gedacht. Ein Fehler wird meist beim Korrekturlesen erkannt und eliminiert. Die falschen Basen werden ausgeschnitten, und die Polymerase fügt den richtigen Baustein ein. Wenn der Fehler wieder auftritt, versuchen Fehlpaarungs-Reparatur-Enzyme, im Zellkern die alte Ordnung wieder herzustellen.
Manchmal werden jedoch nicht alle Fehler ausgemerzt, man nennt sie dann Mutationen . In bestimmtem Maße tragen Mutationen zur Entwicklung und Evolution einer Spezies bei, da sie Veränderungen bewirken. Mutationen entstehen häufig durch Strahlung wie UV-Licht oder Röntgenstrahlen sowie durch Chemikalien. Drei Mutationstypen beeinflussen die Reihenfolge der Nukleotide auf einem DNA-Strang und somit die Basen, die ein Gen bilden.
Insertionen treten auf, wenn ein zusätzliches Nukleotid dem Komplementärstrang angeheftet wird. Dies verändert das Leseergebnis des genetischen Codes über eine bis Hunderte von Basenpaaren hinweg. Wenn ein Gen dadurch nicht mehr richtig gelesen werden kann, entstehen falsche Aminosäuren, die die Funktion des fertigen Proteins beeinträchtigen können, und das kann verheerende Folgen haben. Dieser Mutationstyp ist die Ursache für Krankheiten wie zum Beispiel die Huntington-Krankheit, die zu Degenerationen des Nervensystems führt.
Deletionen entstehen, wenn zwar ein Nukleotid auf dem Template-Strang erkannt, aber das Pendant dazu nicht in den Komplementärstrang eingebaut wird (es wird also eine Base übersprungen). Dieser Mutationstyp verursacht zum Beispiel die zystische Fibrose oder die Duchenne-Muskeldystrophie – zwei schwerwiegende Erkrankungen.
Substitutionen stellen die letzte Gruppe der möglichen Mutationen dar. Dabei wird eine Base ausgetauscht. Da nur jeweils eine Base betroffen ist, wird sie auch als »Punktmutation« bezeichnet. Eine solche Veränderung des genetischen Codes wirkt sich meist nicht sichtbar auf die Gesundheit des Körpers aus und wird deshalb »stille Mutation« genannt.
DNA-Replikation findet immer vor Beginn der Mitose während der Interphase statt. Wie der Name schon vermuten lässt, handelt es sich dabei um eine intermediäre, also Zwischenphase, in der eine Tochterzelle solange verbleibt und wächst, bis sie bereit ist, sich selbst als Mutterzelle zu teilen (siehe Abbildung 2.3).

Abbildung 2.3: Die Phasen der Mitose: Prophase, Metaphase, Anaphase und Telophase
Die einzelnen Schritte der Mitose sehen wie folgt aus (Hinweis: Stellen Sie sich Zellen als kleine Kugeln vor):
1 Prophase: In diesem ersten Stadium der Mitose verdicken sich die einzelnen Chromatiden (DNA-Einzelstränge) und finden sich paarweise zu Chromosomen zusammen (die Berührungsstelle heißt »Centromer«). Chromosomen können sich selbst nicht bewegen. Sie bekommen dazu Hilfe von bestimmten zellulären Strukturen, den Spindelapparaten, die sich zeitgleich an den Polen der Zelle bilden. Die Spindelapparate (Centriolen) bilden lange Spindelfasern, während die Hülle des Kerns, in der die Chromatiden konzentriert waren, allmählich zerfällt.
Читать дальше