HPLC optimal einsetzen

Здесь есть возможность читать онлайн «HPLC optimal einsetzen» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

HPLC optimal einsetzen: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «HPLC optimal einsetzen»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Dieser Praxisratgeber bietet erprobte Strategien für die Optimierung der HPLC und UHPLC in unterschiedlichsten Einsatzgebieten. Im ersten Teil werden Optimierungsstrategien für unterschiedliche Betriebsarten und Analyte behandelt, von Kleinmolekülen bis hin zu chiralen Substanzen und Biomolekülen. Der zweite Teil beschreibt die rechnergestützte Optimierung und stellt die gängigen Software-Tools und deren Leistungsspektrum vor. Weitere Teile beschreiben Optimierungsstrategien aus Sicht von Routineanwendern in großen Industrie- und kleineren Auftragslaboren sowie aus Sicht verschiedener Gerätehersteller.<br> Dieser Leitfaden ist gleichermaßen für Einsteiger wie für routinierte Anwender geschrieben und lässt keine Frage zum optimalen Einsatz der HPLC unbeantwortet.

HPLC optimal einsetzen — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «HPLC optimal einsetzen», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Abb 11Instrumentenkonfiguration die typischerweise für 2DLC verwendet wird - фото 2

Abb. 1.1Instrumentenkonfiguration, die typischerweise für 2D-LC verwendet wird (Quelle: Dr. Gabriel Leme).

Da kommerziell erhältliche Geräte für die 2D-LC-Trennung immer ausgefeilter und zuverlässiger geworden sind, geht der Trend in der Industrie weg von der Offline-Trennung, da die Durchführung von Offline-Trennungen für eine große Anzahl von Proben unpraktisch ist und das Risiko der Degradation und Kontamination der 1D-Fraktionen besteht, wenn sie außerhalb des Geräts gehandhabt werden müssen [4]. Angesichts dieses Trends habe ich mich für den Rest dieses Kapitels ganz auf die Online-2D-LC konzentriert. Leser, die mehr über Offline-2D-LC erfahren möchten, werden auf Übersichtsartikel verwiesen, die sich diesem Thema widmen [5, 6].

1.2.1 Das Analyseziel bestimmt den Modus

Ab Ende der 1970er-Jahre begannen verschiedene Gruppen, die Modi der 2D-LC-Trennung zu entwickeln, die allgemein als Heartcut-Modus und umfassender Modus bezeichnet werden [7, 8]. In den letzten zehn Jahren wurden zwei weitere Modi für 2D-Trennungen entwickelt, die als mehrfacher Heartcut und selektiv umfassend bezeichnet werden. Jeder dieser vier Modi wird in Abschn. 1.2.2ausführlich besprochen. An dieser Stelle möchte ich jedoch betonen, dass die Wahl des Trennmodus immer vom Analyseziel bestimmt werden sollte. Wenn Sie zum Beispiel eine komplexe Probe haben und so viel wie möglich über diese Probe erfahren möchten (d. h. Hunderte von Substanzen identifizieren), dann wird der umfassende Modus der 2D-Trennung fast immer die beste Wahl sein. Wenn Sie jedoch nur an einigen wenigen Zielsubstanzen in der Probe interessiert sind – auch wenn die Probenmatrix hochkomplex ist –, dann ist ein gezielterer Modus der 2D-Trennung wie einfacher oder mehrfacher Heartcut wahrscheinlich der beste Ansatz. In der Praxis ist die Zeit, die für jede 2D-Trennung benötigt wird, der entscheidende Parameter für eine effiziente Nutzung des 2D-LC-Instruments. Jede 2D-Trennung, die nicht notwendig für das Erreichen des Analyseziels ist, verursacht unnötige Kosten sowohl in Bezug auf Zeit als auch auf Material und macht die Methode unnötig komplex.

1.2.2 Gegenüberstellung der vier Modi für 2D-Trennungen

Die überwiegende Mehrheit der heute entwickelten 2D-LC-Anwendungen gehört zu einer der vier in Abb. 1.2 dargestellten 2D-Trennungsarten. Beim einzelnen Heartcut (A; LC-LC) wird eine einzelne Fraktion des 1D-Eluats, die die interessierenden Analyten enthält, am Ausgang der 1D-Säule aufgefangen und zur 2D-Säule transferiert, wo diese Fraktion der ursprünglichen Probe weiter getrennt wird, sofern die in der ersten und zweiten Dimension verwendeten Trennmechanismen komplementär sind. Der vielleicht größte Vorteil des LC-LC-Modus besteht darin, dass die Zeit, die für die Trennung des 1D-Eluats in der zweiten Dimension zur Verfügung steht, nicht begrenzt ist. Dies bietet eine enorme Flexibilität bei der Wahl der Parameter für die 2D-Trennung, einschließlich der Flussrate, der Säulenabmessungen und des Injektionsvolumens. Der größte Nachteil von LC-LC ist jedoch, dass diese Technik auf die Analyse von Substanzen begrenzt ist, die in einer einzigen Fraktion des 1D-Eluats erfasst werden können. Dennoch wurde der LC-LC-Ansatz mit großem Erfolg in diversen Anwendungsbereichen eingesetzt, die von der Identifizierung niedermolekularer pharmazeutischer Verunreinigungen [9] bis zum Nachweis von Arzneimittelmetaboliten im Plasma reichen [10].

Abb 12Die vier verschiedenen Modi der 2DLCTrennung Das genaue Gegenteil - фото 3

Abb. 1.2Die vier verschiedenen Modi der 2D-LC-Trennung.

Das genaue Gegenteil von LC-LC in Bezug auf die analytische Bandbreite ist der umfassende Modus der 2D-Trennung (D; LC × LC). Wie die Abbildung zeigt, werden in diesem Fall Fraktionen des 1D-Eluats gesammelt und nacheinander einzeln in die 2D-Trennung überführt. Typischerweise ergibt dies eine lange Reihe von vielen (zehn bis hundert) 2D-Chromatogrammen, die in einem einzigen Detektionsdatensatz gesammelt werden. Dieser lange Datensatz kann dann in Abschnitte zerlegt werden, die den einzelnen 2D-Trennungen entsprechen, und dann neu formatiert werden, sodass ein zweidimensionales Datenfeld entsteht, das dann entweder als Konturkarte oder als 3D-Oberflächendarstellung visualisiert werden kann. Die Vor- und Nachteile des LC × LC-Ansatzes sind im Grunde genommen umgekehrt wie beim LC-LC-Ansatz. Der Hauptvorteil besteht darin, dass die Bandbreite der 2D-Trennung genauso groß ist wie die Bandbreite der 1D-Trennung. Der größte Nachteil besteht darin, dass die Zeit, die für jede einzelne der 2D-Trennungen zur Verfügung steht, stark eingeschränkt ist aufgrund der großen Zahl der Fraktionen des 1D-Eluats, die von der zweiten Dimension verarbeitet werden müssen.

Die beiden anderen in Abb. 1.2 dargestellten Modi sind Hybride der LC-LC- und LC × LC-Modi. Im Falle des mehrfachen Heartcut (B; mLC-LC) wird eine Fraktion des 1D-Eluats je Abschnitt der 1D-Trennung gesammelt, die für eine weitere Trennung vorgesehen ist. Dies entspricht dem Vorgehen bei der LC-LC, wird im Verlauf der 2D-Trennung aber zwei- oder mehrmals wiederholt. Schließlich werden bei selektiven umfassenden Trennungen (C; sLC × LC) mehrere Fraktionen des 1D-Eluats über eine bestimmte Zone der 1D-Trennung gesammelt, in Schleifen oder „Fallen“ gespeichert, und dann wie bei LC × LC-Trennungen einzeln in die 2D-Säule injiziert. Diese Hybridmodi sind in vielen Fällen deshalb interessant, weil sie die Stärken von LC-LC und LC × LC ausnutzen und gleichzeitig deren Schwächen mildern. Insbesondere bieten mLC-LC und sLC × LC dem Analytiker eine große Flexibilität bei der Entwicklung und Implementierung einer 2D-LC-Methode, da sie die Entkopplung des Sammelns von 1D-Eluatfraktionen von deren weiteren Trennung in der zweiten Dimension ermöglichen [11].

1.2.3 Hybride Modi bieten Flexibilität

Es gibt zahlreiche Möglichkeiten, wie die zusätzliche Flexibilität, die mLC-LC und sLC × LC sich bieten, genutzt werden kann, und ich möchte im Folgenden zwei Beispiele zeigen. Erstens ist sLC × LC hilfreich, um das sogenannte Untererfassungsproblem (Undersampling) bei 2D-Trennungen zu vermeiden. Undersampling bezieht sich auf den unerwünschten Effekt beim Sammeln von 1D-Eluatfraktionen, die breiter als etwa die Hälfte einer 1D-Peakbreite sind. In diesem Fall können Analyten, die nahe beieinander von der 1D-Säule eluieren, bei der Probenahme wieder vermischt werden, und die Trennleistung der ersten Dimension einer 2D-Trennung wird effektiv vermindert [12–14]. Dieses Problem tritt im LC × LC-Modus besonders dann auf, wenn die 1D-Peaks schmal sind (z. B. < 5 s breit). Zur Bewältigung dieser Herausforderung können mehrere schmale (< 1 s) Fraktionen über eine be stimmte Region gesammelt werden, die für die 1D-Trennung von Interesse ist. Zweitens kann der sLC × LC-Modus auch dazu verwendet werden, das Volumen des 1D- Eluats zu steuern, welches für jede interessierende Region der 1D-Trennung in die 2D-Säule injiziert wird. Ein konkretes Beispiel soll diesen Vorteil deutlicher machen. Angenommen, wir haben eine bestehende 1D-LC-Trennung und möchten einen bestimmten Peak auf eine 2D-Säule zur weiteren Trennung und/oder Charakterisierung durch Massenspektrometrie übertragen. Wenn der 1D-Peak 15 s breit ist, dann beträgt das Volumen des zu übertragenden Peaks 250 μl. Obwohl es sicherlich möglich ist, dieses Volumen in einer einzigen Fraktion zu übertragen, gibt es viele Fälle, in denen die Injektion eines solch großen Volumens in die 2D-Säule die Trennleistung der 2D-Trennung beeinträchtigt, insbesondere wenn ein Unterschied zwischen den mobilen Phasen der 1D- und der 2D-Trennung vorliegt [15]. Mit sLC × LC kann man nun vier Fraktionen anstelle einer einzigen des interessierenden 1D-Peaks sammeln, wobei jede der Fraktionen etwa 60 μl beträgt. Diese vier Fraktionen können dann einzeln in die 2D-Säule injiziert werden [16]. Dies wird zwar die Analysezeit erhöhen und erfordert eine komplexere Schnittstelle, aber diese Art von Flexibilität kann bei der Methodenentwicklung sehr wertvoll sein.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «HPLC optimal einsetzen»

Представляем Вашему вниманию похожие книги на «HPLC optimal einsetzen» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «HPLC optimal einsetzen»

Обсуждение, отзывы о книге «HPLC optimal einsetzen» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x