Polar Organometallic Reagents

Здесь есть возможность читать онлайн «Polar Organometallic Reagents» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Polar Organometallic Reagents: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Polar Organometallic Reagents»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Outlines recent advances in the field of polar organometallic chemistry, particularly in the context of the emergent areas of synergic and cooperative species.
Polar Organometallic Reagents
Polar Organometallic Reagents

Polar Organometallic Reagents — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Polar Organometallic Reagents», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
149, obtained by sequentially treating ArC(O)N i ‐... Scheme 1.33 i‐ Bu 2Al(TMP) 2Li 150has enabled the conversion of 4‐halo‐a... Figure 1.20 Molecular structures of aluminated precursors 154and 155to (a)... Figure 1.21 Representation of the Gilman amidocuprate (TMP) 2CuLi. Scheme 1.34 A generalized view of directed ortho ‐cupration. Figure 1.22 Molecular structure of Lipshutz cuprate dimer [(TMP) 2Cu(CN)Li 2(T... Figure 1.23 Molecular structures of organoamidocuprates (a) [MesCu(NBn 2)Li] 2 Scheme 1.35 Selective formation of Gilman and Lipshutz‐type cuprates from Cu... Figure 1.24 Molecular structures of (a) Gilman amidocuprate dimer of (TMP) 2C... Figure 1.25 (a) Schematic of an adduct cuprate structure‐type and (b) molecu... Figure 1.26 Molecular structures of heteroleptic cuprates (a) [(TMP)(DMP)Cu(... Figure 1.27 Molecular structures of the dimers of thiocyananto(amido)cuprate... Figure 1.28 Examples of cyanatocuprates (a) [(TMP) 2Cu(OCN)Li 2(THF)] 2 172 2and... Figure 1.29 Isomers of (TMP) 4Cu 2Li 2; (a) dimer of conventional Gilman cuprat... Figure 1.30 Structurally characterized organoamidocuprate aggregates (a) Ph(... Figure 1.31 The dimer of lithium argentate (TMP) 2Ag(CN)Li 2(THF) 179. Scheme 1.36 Examples of directed deprotometalation using lithium argentate 1... Figure 1.32 Molecular structure of the dimer of [2‐( i ‐Pr) 2NC(O)‐C 6H 4] 2AgLi(T... Scheme 1.37 Lithium argentate 179shows good functional group tolerance when...

2 Chapter 2 Figure 2.1 Common oligomeric structures adopted by the organolithium reagent... Figure 2.2 Part of the infinite solid‐state ladder structure of PhLi 2. Scheme 2.1 Disruption of the polymerization of MeLi tetramers 1by common Le... Figure 2.3 Molecular structures of n‐ BuLi 7(left) and t‐ BuLi 8... Scheme 2.2 Disruption of the n‐ BuLi hexamer by polydentate Lewis donor... Scheme 2.3 Deprotonation of PMDETA by coordinated n‐ BuLi producing 16.... Figure 2.4 Distortion to the central Li 2C 2rings of dimeric t‐ BuLi and... Scheme 2.4 Donor dependence of n‐ BuLi reactivity towards benzene and t... Scheme 2.5 Contrasting solvent‐dependent reactivity of BuLi with the heteroc... Figure 2.5 Polymeric structures of trimethylsilylmethylsodium 24(top) and b... Scheme 2.6 Effect of TMEDA on structures of trimethylsilylmethylsodium and b... Figure 2.6 Common secondary amines employed for metallation chemistry. Scheme 2.7 Simplified bonding in metal‐amide oligomers, using a cyclodimer a... Figure 2.7 Molecular structures of LiDA 35, LiHMDS 36, and LiTMP 37a/ 37b.... Figure 2.8 Representative example of higher‐order and lower‐order structures... Figure 2.9 Influence of the agostic interactions on homo‐, hetero‐ and solva... Figure 2.10 LiCKOR metallation of toluene.Scheme 2.8 Lithiation of sodium 2,4,6‐trimethylphenoxide to yield the hetero...Figure 2.11 Molecular structure of trimetallic alkoxide complex 59(K = dark...Scheme 2.9 Contrasting reactivity of LiCKOR superbase in the presence and ab...Figure 2.12 Molecular structures of [(THF) 2Li(μ‐Cl) 2Mg(THF)TMP] 60(left) an...Scheme 2.10 Synthesis of heteroleptic sodium zincate 62by metallation of be...Scheme 2.11 Contrasting reactivity of a homometallic zinc reagent and a bime...Scheme 2.12 Contrasting reactivity of homoleptic bimetallic HMDS complexes w...Scheme 2.13 Proposed mechanism of addition of diarylmethanes to alkenes cata...Scheme 2.14 Examples of the metallation scope of LiZn t‐ Bu 2(TMP).Figure 2.13 Molecular structure of [(THF)Li(TMP)( t‐ Bu)Zn( t‐ Bu)] Scheme 2.15 Computed transition states for addition versus metallation react...Scheme 2.16 Stoichiometry dependent variable reactivity of LiZn( t ‐Bu) 2(TMP) ...Scheme 2.17 Two‐step mechanism of substrate deprotonation with mixed amido/a...Scheme 2.18 Experimental evidence for alkyl dependence upon two‐step mechani...Scheme 2.19 Disproportionation of anisolyl lithium zincate and the molecular...Figure 2.14 Propagation of EtZn(Et)(TMP)Li 75into a polymer.Scheme 2.20 Synthetic approach and molecular structures of [EtZn{C 10H 6C(=O)NFigure 2.15 Molecular structures of [{(C 5H 5)Fe(C 5H 4)} 2Zn(TMEDA)] 79(left) a...Scheme 2.21 Cascade of reactions upon deprotonating ferrocene with dialkyl‐a...Figure 2.16 Molecular structure of [(TMEDA)Na(TMP)( t‐ Bu)Zn( t‐ Bu)...Scheme 2.22 Stoichiometry dependent mono‐ and di‐deprotonation of aromatic s...Scheme 2.23 Meta ‐deprotonation of N,N ‐dimethylaniline using sodium TMP–zinca...Figure 2.17 Molecular structure of [(3‐Me‐C 6H 4CN) 2Na(TMEDA) 2] +[{6‐Zn( t‐ ...Scheme 2.24 Calculated two‐step mechanism for zincation of benzene with bisa...Scheme 2.25 Dimetallation of thiophene to form novel zincocycle 90.Scheme 2.26 Zincation of benzoylferrocene showing metallated intermediate 91Scheme 2.27 Zincation of THF with sodium zincate 94.Figure 2.18 Molecular structure of Zn[(μ‐OPiv)(μ‐Cl)Li(THF)] 2 98.Scheme 2.28 ZnCl 2insertion into lithiated Dip‐dabqdi complex to yield bimet...Figure 2.19 Proposed anisolyl lithium zincate intermediates from theoretical...Figure 2.20 Postulated mechanism for catalytic hydroboration of carbonyl fun...Scheme 2.29 Synthesis and versatile reactivity of i‐ Bu 2Al(TMP)HLi 101....Figure 2.21 Molecular structure of (THF)Li(μ‐TMP)(μ‐ i‐ Bu)Al i‐ Bu 2Figure 2.22 Molecular structure of (THF)Li(μ‐TMP)(μ‐C 4H 7O)Al i‐ Bu 2 103, ...Scheme 2.30 Basis of trans‐metal‐trapping using a lithium base and stericall...Figure 2.23 Molecular structures of polymeric lithiated NHC 104(left), ring...Scheme 2.31 Nucleophilic addition of homoleptic lithium gallate to pyrazine....Figure 2.24 Molecular structures of mono‐metallated 109and di‐metallated py...Figure 2.25 Molecular structures of aluminated fluoroanisole 111, lithium fl...Scheme 2.32 Contrasting reactivity of benzophenone with magnesium zincate 11...Scheme 2.33 Stoichiometric dependence on preparation of bimetallic Mg/Zn spe...Figure 2.26 Molecular structure of [(THF) 4MgCl 2Zn( t‐ Bu)Cl] 116.Figure 2.27 Molecular structures of [{Mg(THF) 6} 2+2{Zn( o ‐C 6H 4‐OMe) 3} −]...Scheme 2.34 Co‐complexation of EtMgCl with ZnCl 2( 120) and LiCl assisted add...Scheme 2.35 Heteronuclear complex 124used in polymerization alongside propo...Figure 2.28 Molecular structure of Mg/Zn heterometallic polymerization catal...Scheme 2.36 Trapping of carbon dioxide units within a bimetallic Mg/Al compl...Figure 2.29 Molecular structure of [(Nacnac)Ca +(C 6H 6) 2−Al III(Nacnac)(CScheme 2.37 C–F activation of perfluorobenzene with subvalent M–M bonded spe...

3 Chapter 3Scheme 3.1 Generalized representation of the Schlenk equilibrium and the mon...Scheme 3.2 Directed ortho ‐metalation by organolithium reagents.Scheme 3.3 (a) Eaton’s magnesiation of a functionalized cubane and Kondo’s m...Figure 3.1 The structures of the organolithium magnesiate contact ion pairs,...Figure 3.2 The solid‐state structures of (a) Mulvey’s lithium magnesiate, co...Figure 3.3 The ‘inverse crown’ structures of (a) Na/Mg compound 9and (b) K/...Scheme 3.4 Synthesis of the sodium magnesiate ‘inverse crowns’, compounds 9...Figure 3.4 (a) Fourfold deprotonation of ferrocene and (b) monodeprotonation...Scheme 3.5 Deprotonation of benzene and meta ‐deprotonation of toluene by the...Scheme 3.6 ‘Cleave and capture’ of THF effected by the alkyl‐TMP sodium magn...Scheme 3.7 Kinetic and thermodynamic products, compounds 26and 27, resultin...Figure 3.5 The tetrameric ‘pre‐inverse crown’, compound 28.Figure 3.6 The structures of the sodium‐magnesiate inverse crowns (a) compou...Scheme 3.8 Proposed methyllithium deaggregation equilibrium in the presence ...Scheme 3.9 Selective metalation of bromoarenes by the turbo‐Grignard reagent...Scheme 3.10 Applications of magnesium–halogen exchange and arene metalation ...Scheme 3.11 Use of the turbo‐Grignard system, i ‐PrMgCl·LiCl, for the selecti...Scheme 3.12 Turbo‐Grignard mediated deprotonation of terminal alkynes and ox...Scheme 3.13 Use of the turbo‐Grignard system, i‐ Pr‐MgCl·LiCl, for the ...Scheme 3.14 Application of the alkoxo turbo‐Grignard variant, s ‐Bu 2Mg·LiOR (...Figure 3.7 Calculated form of the magnesiate transition state formed during ...Figure 3.8 Solid state structure of [ i ‐PrMgCl(THF)] 2[MgCl 2(THF) 2] 2, compound...Scheme 3.15 Synthetic route to the turbo‐Hauser base, TMPMgCl·LiCl.Scheme 3.16 Comparative ability of TMPMgCl·LiCl and i ‐Pr 2NMgCl·LiCl to effec...Scheme 3.17 Selective magnesiation of diethyl bromoisophthalate with TMPMgCl...Scheme 3.18 Examples of selective deprotonation/magnesiation with the turbo‐...Figure 3.9 Solid state structures of (a) the sodium trialkylcalciate, compou...Scheme 3.19 Synthetic route to heterobimetallic diphenylphenoxides and the s...Scheme 3.20 Enolization of 2,4,6‐trimethylacetophenone by the heterobimetall...Scheme 3.21 Calciate‐catalyzed (5 mol% 55) hydroamination of diphenylbutadiy...Scheme 3.22 The principal mechanistic steps invoked in alkaline earth cataly...Scheme 3.23 Illustrative protonolysis of alkaline earth hexamethyldisilazide...Scheme 3.24 Protic (a) and hydridic (b) alkaline earth catalytic cycles invo...Scheme 3.25 Intermolecular hydroamination catalyzed by alkaline earth anilid...Scheme 3.26 Generic scheme for the alkaline earth‐catalyzed dehydrocoupling ...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Polar Organometallic Reagents»

Представляем Вашему вниманию похожие книги на «Polar Organometallic Reagents» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Polar Organometallic Reagents»

Обсуждение, отзывы о книге «Polar Organometallic Reagents» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x