Computational Statistics in Data Science

Здесь есть возможность читать онлайн «Computational Statistics in Data Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computational Statistics in Data Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computational Statistics in Data Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An essential roadmap to the application of computational statistics in contemporary data science
Computational Statistics in Data Science
Computational Statistics in Data Science
Wiley StatsRef: Statistics Reference Online
Computational Statistics in Data Science

Computational Statistics in Data Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computational Statistics in Data Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A quantum computer acts on complex data vectors of magnitude 1 called qubits with gates that are mathematically equivalent to unitary operators [100]. Assuming that engineers overcome the tremendous difficulties involved in building a practical quantum computer (where practicality entails simultaneous use of many quantum gates with little additional noise), twenty‐first century statisticians might have access to quadratic or even exponential speedups for extremely specific statistical tasks. We are particularly interested in the following four quantum algorithms: quantum search [101], or finding a single 1 amid a collection of 0s, only requires Computational Statistics in Data Science - изображение 220queries, delivering a quadratic speedup over classical search; quantum counting [102], or finding the number of 1s amid a collection of 0s, only requires Computational Statistics in Data Science - изображение 221(where картинка 222is the number of 1s) and could be useful for generating p‐values within Monte Carlo simulation from a null distribution ( Section 2.1); to obtain the gradient of a function (e.g., the log‐likelihood for Fisher scoring or HMC) with a quantum computer, one only needs to evaluate the function once [103] as opposed to картинка 223times for numerical differentiation, and there is nothing stopping the statistician from using, say, a GPU for this single function call; and finally, the HHL algorithm [104] obtains the scalar value картинка 224for the картинка 225‐vector картинка 226satisfying картинка 227and Computational Statistics in Data Science - изображение 228and Computational Statistics in Data Science - изображение 229matrix in time Computational Statistics in Data Science - изображение 230, delivering an exponential speedup over classical methods. Technical caveats exist [105], but HHL may find use within high‐dimensional hypothesis testing (big Under the null hypothesis one can rewrite the score test statistic for - фото 231). Under the null hypothesis, one can rewrite the score test statistic

for and the Fisher information and loglikelihood gradient evaluated a - фото 232

for картинка 233and Computational Statistics in Data Science - изображение 234, the Fisher information and log‐likelihood gradient evaluated at the maximum‐likelihood solution under the null hypothesis. Letting Computational Statistics in Data Science - изображение 235and картинка 236, one may write the test statistic as картинка 237and obtain it in time logarithmic in картинка 238. When the model design matrix картинка 239is sufficiently sparse – a common enough occurrence in large‐scale regression – to render картинка 240itself sparse, the last criterion for the application of the HHL algorithm is met.

5 Rise of Data Science

Core Challenges 4 and 5 – fast, flexible, and user‐friendly algo‐ware and hardware‐optimized inference – embody an increasing emphasis on application and implementation in the age of data science. Previously undervalued contributions in statistical computing, for example, hardware utilization, database methodology, computer graphics, statistical software engineering, and the human–computer interface [76], are slowly taking on greater importance within the (rather conservative) discipline of statistics. There is perhaps no better illustration of this trend than Dr. Hadley Wickham's winning the prestigious COPSS Presidents' Award for 2019

[for] influential work in statistical computing, visualization, graphics, and data analysis; for developing and implementing an impressively comprehensive computational infrastructure for data analysis through R software; for making statistical thinking and computing accessible to large audience; and for enhancing an appreciation for the important role of statistics among data scientists [106].

This success is all the more impressive because Presidents' Awardees have historically been contributors to statistical theory and methodology, not Dr. Wickham's scientific software development for data manipulation [107–109] and visualization [110, 111].

All of this might lead one to ask: does the success of data science portend the declining significance of computational statistics and its Core Challenges? Not at all! At the most basic level, data science's emphasis on application and implementation underscores the need for computational thinking in statistics. Moreover, the scientific breadth of data science brings new applications and models to the attention of statisticians, and these models may require or inspire novel algorithmic techniques. Indeed, we look forward to a golden age of computational statistics, in which statisticians labor within the intersections of mathematics, parallel computing, database methodologies, and software engineering with impact on the entirety of the applied sciences. After all, significant progress toward conquering the Core Challenges of computational statistics requires that we use every tool at our collective disposal.

Acknowledgments

AJH is supported by NIH grant K25AI153816. MAS is supported by NIH grant U19AI135995 and NSF grant DMS1264153.

Notes

1 1Statistical inference is an umbrella term for hypothesis testing, point estimation, and the generation of (confidence or credible) intervals for population functionals (mean, median, correlations, etc.) or model parameters.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computational Statistics in Data Science»

Представляем Вашему вниманию похожие книги на «Computational Statistics in Data Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computational Statistics in Data Science»

Обсуждение, отзывы о книге «Computational Statistics in Data Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x