Bioinformatics and Medical Applications

Здесь есть возможность читать онлайн «Bioinformatics and Medical Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Bioinformatics and Medical Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Bioinformatics and Medical Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

BIOINFORMATICS AND MEDICAL APPLICATIONS
The main topics addressed in this book are big data analytics problems in bioinformatics research such as microarray data analysis, sequence analysis, genomics-based analytics, disease network analysis, techniques for big data analytics, and health information technology.
Audience Bioinformatics and Medical Applications: Big Data Using Deep Learning Algorithms

Bioinformatics and Medical Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Bioinformatics and Medical Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2.1 Comparative Analysis

Please refer to Table 1.1to get a comparative study of the methods and understand the strengths and weakness of each. This helped us immensely in designing our prototype.

1.2.2 Survey Analysis

Analyzing the literature, we came to know the scope and limitations of prediction techniques. In present days, heart disease rate has significantly increased and the reason behind deaths in the United States. National Heart, Lung, and Blood Institute states that cardiovascular breakdown is a problem in the typical electrical circuit of the heart and siphoning power.

The incorporation of methodologies with respect to information enhancement and model variability has been coordinating preparing and testing of AI model, Cleveland dataset from the UCI file utilized a ton of time since that is a checked dataset and is generally utilized in the preparation and testing of ML models. It has 303 tuples and 14 attributes that depend on the factors that are believed to be associated with an increased risk of cardiovascular illness. Additionally, the Kaggle dataset of coronary illness containing records of 70,000 and 12 patient attributes is also used for the purpose of training and assessment.

Table 1.1 Comparative analysis of prediction techniques.

Bioinformatics and Medical Applications - фото 2 Experimental testing and the use of AI indicate that supervi - фото 3 Experimental testing and the use of AI indicate that supervised learning is - фото 4 Experimental testing and the use of AI indicate that supervised learning is - фото 5

Experimental testing and the use of AI indicate that supervised learning is certain calculation exceeds an alternate calculation for a particular issue or for a specific section of the input dataset; however, it is not phenomenal to discover an independent classifier that accomplishes excellent performance the domain of common problems.

Ensembles of classifiers are therefore produced using many techniques such as the use of separate subset of coaching dataset in a sole coaching algorithm, utilizing distinctive coaching on a solitary coaching algorithm or utilizing multiple coaching strategies. We learnt about the various techniques employed in ensemble method like bagging, boosting, stacking, and majority voting and their affect on the performance improvement.

We also learned about Hoeffding Tree which is the first distributed algorithm for studying decision trees. It incorporates a novel way of dissecting decision trees with vertical parallelism. The development of effective integration methods is an effective research field in AI. Classifier ensembles are by and large more precise than the individual hidden classifiers. This is given the fact that several learning algorithms use local optimization methods that can be traced to local optima.

A few methodologies find those features by relationship which can help successful predictive results. This used in combination with ensemble techniques achieves best results. Various combinations have been tried and tested and none is the standardized/best approach. Each technique tries to achieve a better accuracy than the previous one and the race continues.

1.3 Tools and Techniques

Machine learning and information gathering utilizes ensembles on one or more learning algorithms to get different arrangement of classifiers with the ability to improve performance. Experimental studies have time and again proven that it is unusual to get one classifier which will perform the best on the general problem domain. Hence, ensemble of classifiers is often produced using any of the subsequent methods.

• Splitting the data and using various chunks of the training data for single machine learning algorithm.

• Training one learning algorithm using multiple training parameters.

• Using multiple learning algorithms.

Key ideas such as the data setup, data classification, data mining models, and techniques are described below.

1.3.1 Description of Dataset

The source of data is Kaggle dataset for cardiovascular diseases which contains 70,000 records with patient information. The attributes include objective information, subjective information, and results of medical examination. Table 1.2enumerates the 12 attributes.

A heatmap is a clear representation of data where data values are represented as colors. It is used to get a clear view of the relationship between the features. The coefficient of relationship is a factual proportion of the strength of the association between the general developments of two factors with values going between −1.0 and 1.0. A determined number more prominent than 1.0 or less than −1.0 indicates a slip-up in the relationship estimation. Figure 1.1represents the heat map for the input parameters of the defined dataset.

Table 1.2 Dataset attributes.

Feature name Variable name Value type
Age Age No. of days
Height Height Centimeters
Weight Weight Kilograms
Gender Gender Categories
Systolic blood pressure Ap_hi Integer
Diastolic blood pressure Ap_lo Integer
Cholesterol Cholesterol 1: Standard; 2: Above standard; 3: Well above standard.
Glucose Glu 1: Standard; 2: Above standard; 3: Well above standard.
Smoking Smoke Dual
Alcohol intake Alco Dual
Physical activity Active Dual
Presence or absence of CVDs cardio Dual

Figure 11 Heatmap of input attributes Figures 12 13 14 and 15display - фото 6

Figure 1.1 Heatmap of input attributes.

Figures 1.2, 1.3, 1.4, and 1.5display the distribution of some of the input values such as age, gender, presence of cardiovascular disease, and cholesterol type.

1.3.2 Machine Learning Algorithm

Post analysis of the data, it was broken up into training (80%) and testing (20%) sets, respectively. This is necessary to accept the power of the model to summarize new details. A few classifier models have been tested which have been explained as follows.

Figure 12 Age distribution Figure 13 Presence of cardiovascular disease - фото 7

Figure 1.2 Age distribution.

Figure 13 Presence of cardiovascular disease Figure 14 Cholesterol type - фото 8

Figure 1.3 Presence of cardiovascular disease.

Figure 14 Cholesterol type distribution Figure 15 Gender distribution - фото 9

Figure 1.4 Cholesterol type distribution.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Bioinformatics and Medical Applications»

Представляем Вашему вниманию похожие книги на «Bioinformatics and Medical Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Bioinformatics and Medical Applications»

Обсуждение, отзывы о книге «Bioinformatics and Medical Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x