Anthony R. West - Solid State Chemistry and its Applications

Здесь есть возможность читать онлайн «Anthony R. West - Solid State Chemistry and its Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Solid State Chemistry and its Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Chemistry and its Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SOLID STATE CHEMISTRY AND ITS APPLICATIONS
A comprehensive treatment of solid state chemistry complete with supplementary material and full colour illustrations from a leading expert in the field. Solid State Chemistry and its Applications, Second Edition
Student Edition
Significant updates and new content in this second edition include:
A more extensive overview of important families of inorganic solids including spinels, perovskites, pyrochlores, garnets, Ruddlesden-Popper phases and many more New methods to synthesise inorganic solids, including sol-gel methods, combustion synthesis, atomic layer deposition, spray pyrolysis and microwave techniques Advances in electron microscopy, X-ray and electron spectroscopies New developments in electrical properties of materials, including high Tc superconductivity, lithium batteries, solid oxide fuel cells and smart windows Recent developments in optical properties, including fibre optics, solar cells and transparent conducting oxides Advances in magnetic properties including magnetoresistance and multiferroic materials Homogeneous and heterogeneous ceramics, characterization using impedance spectroscopy Thermoelectric materials, MXenes, low dimensional structures, memristors and many other functional materials Expanded coverage of glass, including metallic and fluoride glasses, cement and concrete, geopolymers, refractories and structural ceramics Overview of binary oxides of all the elements, their structures, properties and applications Featuring full color illustrations throughout, readers will also benefit from online supplementary materials including access to CrystalMaker® software and over 100 interactive crystal structure models.
Perfect for advanced students seeking a detailed treatment of solid state chemistry, this new edition of
will also earn a place as a desk reference in the libraries of experienced researchers in chemistry, crystallography, physics, and materials science.

Solid State Chemistry and its Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Solid State Chemistry and its Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 166 Tetragonal space group I41 No 80 coordinates of equivalent - фото 387

Figure 1.66 Tetragonal space group I41 (No 80); coordinates of equivalent positions 8(b):

Special positions with point symmetry 2 4a 0 0 z 0 ½ z ½ ½ ½ - фото 388

Special positions with point symmetry 2, 4(a): 0, 0, z; 0, ½, картинка 389 + z; ½, ½, ½ + z; ½, 0, картинка 390 + z.

1.18.6 Space groups and crystal structures

The purpose of this section is to show the fundamental importance of space groups to crystal structures and how the atomic coordinates of a structure are related to the space group. As examples, two simple but important structures, which have already been described earlier in this chapter, are considered in some detail.

1.18.6.1 The perovskite structure, SrTiO3

The basic information that we need to know is the following:

Unit cell: cubic, a = 3.905 Å

Space group: Pm3m(number 221)

Atomic coordinates: Ti in 1(a) at 0, 0, 0; Sr in 1(b) at ½, ½, ½; O in 3(d) at 0, 0, ½

This is, in fact, a very simple example since although the space group Рm 3 m is complicated, as are all cubic space groups, all the atoms in perovskite lie on special positions. There are 48 general equivalent positions in this space group, but a large number of special positions arise when atoms lie on symmetry elements. Ti occupies a 1‐fold special position at the origin of the unit cell; the symbol 1(a) indicates that there is only one position in this set and (a) the Wyckoff label, for this (set of) position(s). Sr also occupies a 1‐fold special position, 1(b), at the body centre of the cell. Oxygen occupies a 3‐fold special position 3(d); the coordinates of one of these positions, 0, 0, ½ are given and the only remaining information that is needed from the space group are the coordinates of the other two oxygen positions. From International Tables, these are 0, ½, 0 and ½, 0, 0.

From this information, the unit cell and atomic positions may be drawn, first as a projection down one of the cubic cell axes, Fig. 1.41(a) and then as an oblique projection to show the atomic positions more clearly, Fig. 1.41(c). [Note: Fig. 1.41(b) shows an alternative unit cell with Sr at the origin, as discussed in Section 1.17.7.] The coordination environment of each atom may be seen in (c) and interatomic distances calculated by simple geometry, as detailed in Section 1.17.7, together with a more extended discussion of perovskites, structural distortions in some cases and structure–property relations.

1.18.6.2 The rutile structure, TiO2

We need to know the following information:

Unit cell: tetragonal, a = 4.594, с = 2.958 Å

Space group: P 4 2 /mnm (No 136)

Atomic coordinates: Ti in 2(a) at (0, 0, 0); (½, ½, ½); О in 4(f) at ( x , x , 0); ( картинка 391); (½ + x , ½ – x , ½); (½ – x , ½ + x , ½)

As in the perovskite structure, only special positions are used to accommodate atoms and the 16‐fold general positions are unoccupied. The Ti positions are fixed at the corner and body centre but O has a variable parameter, x , whose value must be determined experimentally. Crystal structure determination and refinement gives x = 0.30 for TiO 2. The unit cell of rutile is shown projected onto the xy plane in Fig. 1.37(a) and the structure is described fully in Section 1.17.6.

The symmetry elements in space group P 4 2 /mnm are shown in Fig. 1.67; most should also be readily apparent on inspection of the structural model shown in Fig. 1.37(a and f). Thus, the 4 2axes are located halfway along the cell edges although no atoms lie on these 4 2axes. The oxygen atoms are arranged on spirals around the 4 2axes such that translation by c /2 and rotation by 90° convert one oxygen position to another. Centres of symmetry are present, for example, at the cell corners; also 2 and 2 1axes and (not shown) mirror planes and glide planes are present.

Figure 167 The symmetry elements in space group P42mnm 1187 Systematic - фото 392

Figure 1.67 The symmetry elements in space group P42/mnm.

1.18.7 Systematic absences in diffraction patterns and space groups

We see in Chapter 5how the presence of lattice centring or elements of space symmetry lead to systematically absent reflections from X‐ray (but also electron and neutron) diffraction patterns. For example, in space group C 2, the C ‐centring imposes the condition that only those reflections that satisfy the rule: for ( hkl : h + k = 2 n ) are allowed. The 2 1screw axes parallel to b impose the condition for reflection: for ( 0k0 : k = 2 n) . However, this is also a consequence of the C ‐centring condition, for the special case that h = l = 0, and so does not lead to any extra systematic absences . Information on the conditions limiting possible reflections is given for every space group in International Tables for X‐ray Crystallography . In the above case, since the 2 1screw axes do not impose an extra set of conditions, they are often written in parentheses.

The presence of glide planes in a crystal may sometimes by detected by the absence of a set of X‐ray reflections. For an a glide perpendicular to b, the condition limiting the h 0 l reflections is that h = 2 n (i.e. only even h values may be observed). In the space group C 2/ m , this condition is part of the more general condition for C ‐centring, namely: for hkl , h + k = 2 n . Independent evidence for the existence of the glide plane is therefore not immediately available from the X‐ray patterns.

Two further examples: in space group P 222 1, the only symmetry element which causes systematic absences is the 2 1axis parallel to z , i.e. for 00 l reflections, only those for which l = 2 n may be observed; there are no general conditions on hkl reflections since the space group is primitive. For space group I 4 1, two conditions are imposed on the possible reflections: for the body centring, only the reflections hkl: h + k + l = 2 n may be observed; the 4 1screw axis places the additional condition that: for 00 l reflections, l = 4 n .

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Solid State Chemistry and its Applications»

Представляем Вашему вниманию похожие книги на «Solid State Chemistry and its Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Solid State Chemistry and its Applications»

Обсуждение, отзывы о книге «Solid State Chemistry and its Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x