Anthony R. West - Solid State Chemistry and its Applications
Здесь есть возможность читать онлайн «Anthony R. West - Solid State Chemistry and its Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Solid State Chemistry and its Applications
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Solid State Chemistry and its Applications: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Solid State Chemistry and its Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A comprehensive treatment of solid state chemistry complete with supplementary material and full colour illustrations from a leading expert in the field. Solid State Chemistry and its Applications, Second Edition
Student Edition
Significant updates and new content in this second edition include:
A more extensive overview of important families of inorganic solids including spinels, perovskites, pyrochlores, garnets, Ruddlesden-Popper phases and many more New methods to synthesise inorganic solids, including sol-gel methods, combustion synthesis, atomic layer deposition, spray pyrolysis and microwave techniques Advances in electron microscopy, X-ray and electron spectroscopies New developments in electrical properties of materials, including high Tc superconductivity, lithium batteries, solid oxide fuel cells and smart windows Recent developments in optical properties, including fibre optics, solar cells and transparent conducting oxides Advances in magnetic properties including magnetoresistance and multiferroic materials Homogeneous and heterogeneous ceramics, characterization using impedance spectroscopy Thermoelectric materials, MXenes, low dimensional structures, memristors and many other functional materials Expanded coverage of glass, including metallic and fluoride glasses, cement and concrete, geopolymers, refractories and structural ceramics Overview of binary oxides of all the elements, their structures, properties and applications Featuring full color illustrations throughout, readers will also benefit from online supplementary materials including access to CrystalMaker® software and over 100 interactive crystal structure models.
Perfect for advanced students seeking a detailed treatment of solid state chemistry, this new edition of
will also earn a place as a desk reference in the libraries of experienced researchers in chemistry, crystallography, physics, and materials science.
. These are represented by large open circles; a positive sign indicates that they are above the plane of the paper and a negative sign below. In the latter case, that position will lie in the unit cell below the one that has been defined. A comma inside the equivalent position symbol indicates an enantiomorphic relationship to a second, centrosymmetrically related equivalent position.
(number 2); coordinates of equivalent positions: x, y, z;
.
,
,
.
has two equivalent positions that lie inside the unit cell: x , y, z (position 1) and
,
,
(the position at height с above 2″ in Fig. 1.60).
, many other centres of symmetry are created automatically. For example, the centre of symmetry at и arises because pairs of positions such as 1 and 2‴, 2 and 1‴, etc., are centrosymmetrically related through u . This may be seen from the diagram or may be proven by comparing coordinates of the three positions: positions 2‴ and 1 are equidistant from и and lie on a straight line that passes through u .
,
,
are general positions and apply to any value of x , у, z between 0 and 1. In certain circumstances, x , y, z and
, ½,
coincide, for example, if x = y = z = ½. In this case, there is only one position, ½,½,½ which is a special position. Special positions arise when the general position lies on a symmetry element, in this case a centre of symmetry, as discussed for point groups in Section 1.18.3. The coordinates of the one‐fold special positions in P
are, therefore, (0, 0, 0), (½, 0, 0), (0, ½, 0), (0, 0, ½), (½, ½, 0), (½, 0, ½), (0, ½, ½) and (½, ½, ½), and correspond to the corner, edge, face and body centres of the unit cell.