10 10European Union (2013). Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union L226: 1–17.
11 11European Union (2020). Commission implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Official Journal of the European Union L257: 32–35.
12 12European Union (2015). Commission Directive (EU) 2015/1787 of 6 October 2015 amending Annexes II and III to Council Directive 98/83/EC on the quality of water intended for human consumption. Official Journal of the European Union L260: 6–17.
13 13European Union (2006). Directive 2006/118/EC of the European parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union L372: 19–31.
14 14US EPA (2020). Water quality criteria. https://www.epa.gov/wqc. Accessed 14 December 2021.
15 15 US EPA (2020). National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Organic. Accessed 14 December 2021.
16 16US EPA (2020) Main water legislation. https://www.epa.ie/water/waterleg. Accessed 14 December 2021.
17 17Spanish Ministry of Presidency (2005). Royal Decree 9/2005 of 14 January which establishes a list of potentially soil contaminating activities and criteria and standards for declaring that sites are contaminated. Official Gazette of the Spanish State 15: 1833–1843.
18 18Wong, K.L.K., Webb, D.T., Nagorzanski, M.R., Kolpin, D.W., Hladik, M.L., Cwiertny, D.M., and LeFevre, G.H. (2019). Chlorinated byproducts of neonicotinoids and their metabolites: an unrecognized human exposure potential? Environ. Sci. Technol. Lett. 6: 98–105. doi: 10.1021/acs.estlett.8b00706.
19 19Kiss, A. and Virág, D. (2009). Photostability and photodegradation pathways of distinctive pesticides. J. Environ. Qual. 38: 157–163. doi: 10.2134/jeq2007.0504.
20 20Ibáñez, M., Sancho, J.V., Pozo, Ó.J., and Hernández, F. (2006). Use of liquid chromatography quadrupole time-of-flight mass spectrometry in the elucidation of transformation products and metabolites of pesticides. Diazinon as a case study. Anal. Bioanal. Chem. 384: 448–457. doi: 10.1007/s00216-005-0167-6.
21 21Li, M., Wang, R., Kong, Z., Gao, T., Wang, F., and Fan, B. (2020). Cyflumetofen degradation in different aquatic environments and identification of hydrolytic products. J. Environ. Chem. Eng. 8: 104512. doi: 10.1016/j.jece.2020.104512.
22 22Hensen, B., Olsson, O., and Kümmerer, K. (2020). A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach. Environ. Int. 137: 105533. doi: 10.1016/j.envint.2020.105533.
23 23Fonseca, E., Renau-Pruñonosa, A., Ibáñez, M., Gracia-Lor, E., Estrela, T., Jiménez, S., Pérez-Martín, M.A., González, F., Hernández, F., and Morell, I. (2019). Investigation of pesticides and their transformation products in the Júcar River Hydrographical Basin (Spain) by wide-scope high-resolution mass spectrometry screening. Environ. Res. 177: 108570. doi: 10.1016/j.envres.2019.108570.
24 24Quintana, J., de La Cal, A., and Boleda, M.R. (2019). Monitoring the complex occurrence of pesticides in the Llobregat basin, natural and drinking waters in Barcelona metropolitan area (Catalonia, NE Spain) by a validated multi-residue online analytical method. Sci. Total Environ. 692: 952–965. doi: 10.1016/j.scitotenv.2019.07.317.
25 25Fisher, I.J., Phillips, P.J., Bayraktar, B.N., Chen, S., McCarthy, B.A., and Sandstrom, M.W. (2021). Pesticides and their degradates in groundwater reflect past use and current management strategies, Long Island, New York, USA. Sci. Total Environ. 752: 141895. doi: 10.1016/j.scitotenv.2020.141895.
26 26 Kiefer, K., Müller, A., Singer, H., and Hollander, J. (2019). New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 165: 114972. doi: 10.1016/j.watres.2019.114972.
27 27Reemtsma, T., Alder, L., and Banasiak, U. (2013). Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. Water Res. 47: 5535–5545. doi: 10.1016/j.watres.2013.06.031.
28 28Lopez-Ruiz, R., Romero-González, R., and Garrido-Frenich, A. (2019). Residues and dissipation kinetics of famoxadone and its metabolites in environmental water and soil samples under different conditions. Environ. Pollut. 252: 163–170. doi: 10.1016/j.envpol.2019.05.123.
29 29Tiwari, M.K. and Guha, S. (2013). Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ. Monit. Assess. 185: 8451–8463. doi: 10.1007/s10661-013-3186-3.
30 30Peterson, M.A., McMaster, S.A., Riechers, D.E., Skelton, J., and Stahlman, P.W. (2016). 2,4-D past, present, and future: a review. Weed Technol. 30: 303–345. doi: 10.1614/wt-d-15-00131.1.
31 31Pietrzak, D., Kania, J., Kmiecik, E., Malina, G., and Wator, K. (2020). Fate of selected neonicotinoid insecticides in soil–water systems: current state of the art and knowledge gaps. Chemosphere 255 (126981). doi: 10.1016/j.chemosphere.2020.126981.
32 32Dereumeaux, C., Fillol, C., Quenel, P., and Denys, S. (2020). Pesticide exposures for residents living close to agricultural lands: a review. Environ. Int. 134: 105210. doi: 10.1016/j.envint.2019.105210.
33 33Nascimento, M.M., Da Rocha, G.O., and De Andrade, J.B. (2018). Pesticides in the atmospheric environment: an overview on their determination methodologies. Anal. Methods. 10: 4484–4504. doi: 10.1039/c8ay01327f.
34 34Stehle, S., Bline, A., Bub, S., Petschick, L.L., Wolfram, J., and Schulz, R. (2019). Aquatic pesticide exposure in the U.S. as a result of non-agricultural uses. Environ. Int. 133: 105234. doi: 10.1016/j.envint.2019.105234.
35 35European Environment Agency (2018). European waters. Assessment of status and pressures 2018. EEA Report No 7/2018. Available at: https://www.eea.europa.eu/publications/state-of-water. Accessed 14 December 2021.
36 36Sjerps, R.M.A., Kooij, P.J.F., van Loon, A., and Van Wezel, A.P. (2019). Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235: 510–518. doi: 10.1016/j.chemosphere.2019.06.207.
37 37Pérez, D.J., Iturburu, F.G., Calderon, G., Oyesqui, L.A.E., De Gerónimo, E., and Aparicio, V.C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263: 128061. doi: 10.1016/j.chemosphere.2020.128061.
38 38Ordaz-Guillén, Y., Galíndez-Mayer, C.J., Ruiz-Ordaz, N., Juárez-Ramírez, C., Santoyo-Tepole, F., and Ramos-Monroy, O. (2014). Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ. Sci. Pollut. Res. 21: 8765–8773. doi: 10.1007/s11356-014-2809-8.
39 39Magnoli, K., Carranza, C.S., Aluffi, M.E., Magnoli, C.E., and Barberis, C.L. (2020). Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 27: 38501–38512. doi: 10.1007/s11356-020-10370-6.
40 40Andreu, V. and Picó, Y. (2012). Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 404: 2659–2681. doi: 10.1007/s00216-012-6331-x.
Читать дальше