Neil McCartney - Properties for Design of Composite Structures

Здесь есть возможность читать онлайн «Neil McCartney - Properties for Design of Composite Structures» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Properties for Design of Composite Structures: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Properties for Design of Composite Structures»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

PROPERTIES FOR DESIGN OF COMPOSITE STRUCTURES
A comprehensive guide to analytical methods and source code to predict the behavior of undamaged and damaged composite materials Properties for Design of Composite Structures: Theory and Implementation Using Software
Properties for Design of Composite Structures: Theory and Implementation Using Software

Properties for Design of Composite Structures — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Properties for Design of Composite Structures», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.4 Shear Modulus

3.4.1 Spherical Particle Embedded in Infinite Matrix Material Subject to Pure Shear Loading

For a state of pure shear, and in the absence of thermal effects, the displacement field of a homogeneous sample of material referred to a set of Cartesian coordinates (x1,x2,x3) has the form

Properties for Design of Composite Structures - изображение 287(3.31)

and the corresponding strain and stress components are given by

332 333 The parameters γ and τ are the shear strain half the - фото 288(3.32)

333 The parameters γ and τ are the shear strain half the engineering shear - фото 289(3.33)

The parameters γ and τ are the shear strain (half the engineering shear strain) and shear stress, respectively, such that τ=2μγ where μ is the shear modulus of an isotropic material. The principal values of the stress field are along (tension) and perpendicular to (compression) the line x2=x1.

A single spherical particle of radius a is now placed in, and perfectly bonded to, an infinite matrix, where the origin of spherical polar coordinates ( r , θ , ϕ ) is taken at the centre of the particle. The system is then subject only to a shear stress applied at infinity. At the particle/matrix interface the following perfect bonding boundary conditions must be satisfied:

334 A displacement field equivalent to that used by Hashin 5 based on - фото 290(3.34)

A displacement field equivalent to that used by Hashin [5 ], based on the analysis of Love [8, Equations (5)–(7)] that leads to a stress field satisfying the equilibrium equations and the stress-strain relations ( 3.15) with ΔT=0, can be used to solve the embedded isolated sphere problem (see Appendix A). The displacement and stress fields in the particle are bounded at r = 0 so that

335 336 In the matrix the displacement field and stress field - фото 291(3.35)

336 In the matrix the displacement field and stress field stresses - фото 292(3.36)

In the matrix the displacement field and stress field (stresses bounded as r→∞) have the form

337 338 The representation is identical in form to that used by - фото 293(3.37)

338 The representation is identical in form to that used by Christensen - фото 294(3.38)

The representation is identical in form to that used by Christensen and Lo [9] although they used a definition of ϕ that differs from that used here by an angle of π/4. This difference has no effect on the approach to be followed. It follows from ( 3.35)–( 3.38) that the continuity conditions ( 3.34) are satisfied if the following four independent relations are satisfied

339 and it can then be shown that 340 As Cp0 it follows from - фото 295(3.39)

and it can then be shown that

340 As Cp0 it follows from 335 and 336 that both the strain and - фото 296(3.40)

As Cp=0, it follows from ( 3.35) and ( 3.36) that both the strain and stress distributions in the particle are uniform.

3.4.2 Application of Maxwell’s Methodology

To apply Maxwell’s methodology to a cluster of N particles embedded in an infinite matrix, the stress distribution in the matrix at large distances from the cluster is considered. The perturbing effect in the matrix at large distances from the cluster of particles is estimated by superimposing the perturbations caused by each particle, regarded as being isolated, and regarding all particles to be located at the origin. The properties of particles of type i will again be denoted by a superscript (i).

The stress distribution at very large distances from the cluster is then given by the following generalisation of relations ( 3.38)

341 where from 340 for i 1 N 342 For the isolated - фото 297(3.41)

where from ( 3.40), for i = 1, …, N ,

342 For the isolated sphere of radius b having the effective properties of - фото 298(3.42)

For the isolated sphere of radius b having the effective properties of the particulate composite cluster as illustrated in Figure 3.1(b), it follows that the stress field in the matrix at large distances is described exactly by relations of the type ( 3.38) where the coefficient Dm is replaced by D¯m having the value determined by the relation

343 where μeff is the effective shear modulus of the isotropic particulate - фото 299(3.43)

where μeff is the effective shear modulus of the isotropic particulate composite. It then follows from ( 3.38) and ( 3.40) that the exact matrix stress distribution, for a given value of μeff, is

344 As the stress distribution given by 341 must be identical at large - фото 300(3.44)

As the stress distribution given by ( 3.41) must be identical at large distances from the cluster with that specified by ( 3.44) it follows, from a consideration of terms proportional to r−3, that

Properties for Design of Composite Structures - изображение 301(3.45)

where use has been made of ( 3.1). On substituting ( 3.42) and ( 3.43) into ( 3.45), it can be shown using ( 3.1) that the following ‘mixtures’ result is obtained for the function 1/(μ+μm*)

346 On using 31 the effective shear modulus may be estimated using - фото 302(3.46)

On using ( 3.1), the effective shear modulus may be estimated using the following relation

347 It can be shown that the bounds for the effective shear modulus - фото 303(3.47)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Properties for Design of Composite Structures»

Представляем Вашему вниманию похожие книги на «Properties for Design of Composite Structures» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Properties for Design of Composite Structures»

Обсуждение, отзывы о книге «Properties for Design of Composite Structures» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x