Иногда, когда я блуждаю среди кажущихся бесконечными изгибов и поворотов своих исследований, я сомневаюсь, обладает ли мой мозг достаточными ресурсами для решения той задачи, над которой я работаю. Собственно говоря, при помощи математики можно доказать, что существуют математические задачи, превосходящие физические возможности человеческого мозга, который содержит 86 миллиардов нейронов, соединенных между собой более чем 100 триллионами синапсов.
Математика беспредельна. Она продолжается вечно. В отличие от шахмат, в которых, по оценкам, возможно около 10 1050разных партий, число доказуемых математических утверждений бесконечно. В шахматах фигуры «съедают», партии выигрывают, и последовательности повторяются. В математике же не существует эндшпиля, из чего следует, что, даже если все мои 86 миллиардов нейронов будут возбуждаться с максимальной физически возможной скоростью, в течение всей своей жизни я смогу сделать лишь некоторое конечное число логических шагов и, таким образом, познать лишь некоторую конечную часть математики. Что, если для доказательства моей гипотезы PORC требуется больше логических шагов, чем я могу сделать за свою жизнь?
Даже если мы превратим всю Вселенную в один большой компьютер, возможный объем его знания все равно будет ограничен. В своей статье под названием «Вычислительная мощность Вселенной» [112]Сет Ллойд подсчитал, что с момента Большого взрыва Вселенная не могла произвести более 10 120операций с данными, максимальный объем которых составляет 10 90битов. В любой момент времени Вселенная может знать лишь некоторую конечную часть математики. Вы можете спросить: «А что, собственно, вычисляет Вселенная?» На самом деле она вычисляет свою собственную динамическую эволюцию. И хотя эти числа огромны, они все же конечны. Это означает, что мы можем доказать путем вычислений, что в любой момент времени всегда будет нечто, чего мы не знаем.
Но оказывается, что в математике существует и еще более глубокий уровень неизвестного. Даже если бы у нас был компьютер бесконечной мощности и бесконечного быстродействия, и тогда оставались бы вещи, которых мы никогда не узнаем. Одна теорема, доказанная в ХХ в., открыла нам пугающую возможность того, что даже такой компьютер бесконечной мощности может никогда не узнать, справедлива ли моя гипотеза PORC. Эта так называемая теорема Гёделя о неполноте потрясла математику до основания. Возможно, эти гипотезы и справедливы, но мы никогда не сможем доказать их в рамках аксиоматической системы нашей математики. Гёдель доказал, что в рамках любой аксиоматической системы математики существуют математически истинные утверждения, истинность которых невозможно доказать в рамках той же аксиоматической системы. Математическое доказательство существования чего-то, что не может быть доказано, – математика за гранью.
Когда я узнал об этой теореме в университете, она сильно потрясла меня. Несмотря на физические ограничения моего собственного мозга или мозга Вселенной, я, по-видимому, вырос в уютном убеждении, что по меньшей мере теоретически где-то существует доказательство, которое покажет, истинна или ложна моя гипотеза PORC, истинна или ложна гипотеза Римана. Один из моих героев, венгерский математик Пал Эрдёш, всегда с нежностью отзывался о доказательствах из Книги – так Эрдёш называет свод, где Бог хранит самые изящные доказательства всех математических теорем. Задача математика состоит в открытии доказательств из Книги. Как пошутил Эрдёш на лекции, которую он читал в 1985 г., «не обязательно верить в Бога, но нужно верить в Книгу». Сам Эрдёш сомневался в существовании Бога и называл его «Верховным фашистом», который вечно прячет от него то носки, то венгерский паспорт. Но мне кажется, что большинство математиков было согласно с метафорой Книги. Однако из того доказательства, о котором я узнал на университетской лекции по математической логике, следовало, что в Книге не хватает некоторых страниц – страниц, которых нет даже у «Верховного фашиста».
Открытие существования математических утверждений, лежащих за пределами доказательств, было вызвано пониманием того, что одно из геометрических положений, которое Евклид использовал в качестве аксиомы, на самом деле не столь аксиоматично, как принято было думать.
Аксиома – это предпосылка или отправная точка любой последовательности логических рассуждений. В общем случае считается, что аксиома выражает некую самоочевидную истину, справедливость которой общепризнанна и не нуждается в доказательстве. Например, я верю, что если взять два числа, то в каком бы порядке я их ни складывал, я всегда получу один и тот же ответ. Если взять число 36 и прибавить к нему 43, ответ будет тем же, что и если взять 43 и прибавить 36. Можно спросить, откуда я знаю, что это всегда будет так. Может быть, если взять действительно большие количества объектов и сложить их, произойдет что-нибудь странное. Вот как работает математика: она производит дедуктивные выводы о числах, которые удовлетворяют этому правилу. Если тот способ, которым мы считаем объекты во Вселенной, дает какие-нибудь странные результаты, мы должны просто признать, что та математика, которую мы разработали на основе этой аксиомы, неприменима к тому, как ведут себя физические числа во Вселенной. Тогда нам нужно разработать новую теорию чисел, основанную на числах, удовлетворяющих другому фундаментальному набору аксиом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу