Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

x n + y n = z n ,

где натуральное число п больше 2. Это, очевидно, не так в случае n = 2, который соответствует уравнению, выведенному Пифагором для прямоугольного треугольника. Если n = 2, решений существует множество, например 3 2 + 4 2 = 5 2. На самом деле таких решений бесконечно много, и уже древние греки нашли формулу, по которой можно получить все такие решения. Но находить решения часто оказывается гораздо проще, чем доказать невозможность нахождения чисел, которые удовлетворяли бы любым из уравнений Ферма.

Как известно, Ферма считал, что нашел решение, но написал на полях своего экземпляра «Арифметики» Диофанта, что эти поля слишком малы для найденного им замечательного доказательства. Прошло целых 350 лет, прежде чем мой коллега по Оксфорду Эндрю Уайлс наконец смог представить убедительное доказательство того, почему целочисленные решения уравнения Ферма найти невозможно. Доказательство Уайлса занимает более сотни страниц, не считая тысяч страниц ранее разработанной теории, на которой оно основано. Так что для его изложения не хватило бы даже очень широких полей.

Доказательство Великой теоремы Ферма – это проявление подлинного мастерства. Я считаю честью для себя жить в то самое время, когда были найдены последние фрагменты этой головоломки.

До того как Уайлс продемонстрировал невозможность существования решения, все еще сохранялась возможность существования каких-нибудь особо хитрых чисел, которые могут быть решением одного из таких уравнений. Я помню великолепную первоапрельскую шутку, которая гуляла по математическому сообществу примерно в то же время, когда Уайлс объявил о своем доказательстве. Суть шутки состояла в том, что Ноам Элкис, уважаемый специалист по теории чисел из Гарварда, получил неконструктивное доказательство существования такого решения. Это первоапрельское электронное сообщение было написано весьма изобретательно, так как слово «неконструктивное» означало, что он не может прямо назвать числа, являющиеся решением уравнений Ферма, но из его доказательства следует, что решение должно существовать. Самое замечательное состоит в том, что многим это сообщение было переправлено через несколько дней после 1 апреля, когда шутка впервые вышла в свет, так что они понятия не имели, что она имеет отношение к первоапрельским розыгрышам.

Даже и без всевозможных розыгрышей математическое сообщество провело 350 лет, не зная, существует ли такое решение. Мы просто этого не знали. Но Уайлс в конце концов прекратил наши мучения. Его доказательство означает, что, сколько бы мы ни перебирали чисел, мы никогда не найдем такие три числа, которые будут решением одного из уравнений Ферма.

Нехватка нейронов

Мы живем в золотой век математики, в течение которого были наконец решены некоторые из величайших нерешенных задач. В 2003 г. российский математик Григорий Перельман решил одну из труднейших задач геометрии, доказав гипотезу Пуанкаре. Однако по-прежнему существует множество утверждений о числах и уравнениях, доказательства которых все еще ускользают от нас: гипотеза Римана, гипотеза парных простых чисел, гипотеза Бёрча – Свиннертон-Дайера, гипотеза Гольдбаха.

Мои собственные исследования, которым я посвятил последние двадцать лет, направлены на выяснение истинности или ложности так называемой гипотезы PORC [111]. Ее сформулировал более 50 лет назад оксфордский математик Грэм Хигман, предполагавший, что число групп симметрии с определенным числом симметрий должно выражаться красивым полиномиальным уравнением (буква Р в аббревиатуре PORC обозначает полином). Например, число групп симметрии с р 6симметриями, где р – простое число, дается квадратичным выражением относительно р: р 2 + 39 р + с (где с – константа, которая зависит от остатка от деления р на 60).

Результаты моих собственных исследований заставляют серьезно усомниться в справедливости этой гипотезы. Я открыл симметричный объект с р 9симметриями, поведение которого свидетельствует о значительном отклонении от предсказаний гипотезы Хигмана. Но это не дает окончательного решения задачи. По-прежнему возможно, что существуют другие симметричные объекты с р 9симметриями, которые могут скомпенсировать обнаруженное мною странное поведение, – и тогда гипотеза Хигмана останется справедливой. Поэтому на данный момент я не знаю, справедлива ли его гипотеза, а сам Хигман, к сожалению, умер, так и не узнав ответа на этот вопрос. Мне не терпится узнать его прежде, чем и моя конечная жизнь придет к своему концу, и именно вопросы такого рода побуждают меня заниматься математическими исследованиями.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x