Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако в 1930 г. индийский физик Субраманьян Чандрасекар понял, что не все тут так гладко. Пока Чандрасекар плыл на корабле из Индии в Англию, где он должен был приступить к работе в докторантуре в Кембридже, он осознал, что специальная теория относительности устанавливает предельную скорость, с которой могут двигаться такие частицы. Поэтому если масса звезды достаточно велика, то после достижения этого предела гравитация победит и звезда начнет стремительно сжиматься, образуя в пространстве область все увеличивающейся плотности. Из вычислений, которые он произвел на своем корабле, следовало, что такая судьба ждет любую звезду, масса которой превышает массу Солнца более чем в 1,4 раза. В результате такого катастрофического сжатия – коллапса – возникает сверхновая, в которой происходит образование тяжелых элементов, например золота и урана.

Пространство, окружающее такие точки высокой плотности, искривляется чрезвычайно сильно, настолько, что свет, заключенный внутри его, не может выбраться наружу. В качестве одной из иллюстраций, объясняющих, как может возникнуть такая ловушка, можно представить себе мяч, который подбрасывают в воздух. Если такой мяч бросить с поверхности Земли с достаточно большой скоростью, он сможет освободиться от гравитационного притяжения Земли. Скорость, с которой для этого нужно бросить мяч, называется скоростью убегания [93]. Но представим себе, что масса Земли постоянно увеличивается. Тогда увеличивается и скорость, необходимая для преодоления гравитационного притяжения. Однако в какой-то момент масса Земли станет такой большой, что скорость убегания мяча должна будет превысить скорость света. Начиная с этого момента мяч оказывается в ловушке. Он не может улететь дальше некоторой точки, из которой Земля притянет его обратно.

Так обстояло дело в классической картине гравитации, существовавшей до Эйнштейна. В конце XVIII в. Лаплас и английский физик Джон Мичелл уже присматривались к идее о возможности уловления света массивными объектами. Однако из сделанного столетием позже открытия Майкельсона и Морли, которые выяснили, что свет в вакууме всегда распространяется с одной и той же скоростью, следовало, что свет ведет себя не так, как мяч. Гравитация не может замедлить свет, как предполагали Лаплас и Мичелл. Но если гравитация является результатом искривления пространства-времени в соответствии с концепцией Эйнштейна, то такое искривление может помешать распространению света. Согласно идее Эйнштейна, может существовать область пространства настолько искривленная, что даже свет (не имеющий массы, но тем не менее подверженный влиянию кривизны пространства) не сможет ее покинуть. Пространство искривлено там настолько, что свет не может пробиться наружу, но загибается в обратном направлении, внутрь области высокой плотности. В 1967 г. американский физик Джон Уилер нарек такие области причудливым именем «черных дыр». Ричарду Фейнману оно показалось непристойным: французское выражение trou noir вызывает совсем другие ассоциации. Однако название прижилось.

По мере удаления от центра сжавшейся звезды воздействие гравитации ослабляется. В результате возникает сферическая граница, в центре которой находится черная дыра, и такая сфера определяет рубеж невозврата: свет, находящийся за пределами этой сферы, может выйти наружу; но свет и любые другие объекты, попавшие внутрь такой границы, оказываются в ловушке, так как их скорость недостаточна для выхода за нее. Такую сферу называют горизонтом событий черной дыры, потому что наблюдатель, находящийся снаружи сферы, не может увидеть события, происходящие внутри ее.

Для того чтобы звезда сжалась до размера такой сферы, ее масса должна быть достаточно большой. Например, масса Земли слишком мала для образования черной дыры – для этого ей пришлось бы сжаться до сферы радиусом всего в 1 см. Солнце тоже недостаточно массивно: радиус его горизонта событий составлял бы всего 3 км. Но, если масса звезды превышает массу нашего Солнца в 1,4 раза, направленное вовнутрь гравитационное давление преодолевает любое порожденное импульсом заключенной в ней материи давление, направленное вовне, и такая звезда коллапсирует внутрь своего горизонта событий.

Черные дыры были предметом оживленных споров с тех самых пор, когда теоретическое предположение об их существовании было впервые высказано после публикации уравнений гравитации Эйнштейна в 1915 г. Некоторые считали, что сжимающиеся звезды могут каким-то образом избежать попадания в такие запретные области. Может быть, такая звезда отбросит лишнюю массу? Это, конечно, допустимо, но звезда, в 20 раз более тяжелая, чем Солнце, смогла бы избежать превращения в черную дыру, только отбросив 95 % своей массы, что не кажется вероятным. Тем не менее некоторые ученые считали, что такие области пространства-времени в реальности не существуют.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x