Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим, например, функцию, в которую вводят расстояние до массивного объекта, а в качестве результата получают величину гравитационного притяжения, порождаемого в данной точке этим массивным объектом. Ньютон осознал, что такое притяжение становится тем слабее, чем больше расстояние до объекта. Он открыл очень точное соотношение между величиной притяжения и расстоянием. Если я нахожусь на расстоянии х от планеты, то, согласно функции Ньютона, сила гравитационного притяжения пропорциональна 1/ х 2. Это так называемый закон обратных квадратов. Можно нарисовать график этой функции.

График функции 1x 2 Функция имеет сингулярность в точке x 0 Однако при - фото 63

График функции 1/x 2 . Функция имеет сингулярность в точке x = 0

Однако при приближении к объекту происходит нечто интересное. Сила становится все больше и больше, пока мы не доходим до точки х = 0, в которой результат становится бесконечным, а на графике нельзя отложить значение. Разумеется, в реальности такое расстояние измеряется от центра планеты и при достижении ее поверхности функция и график изменяются, потому что после прохождения сквозь поверхность планеты разные ее части начинают оказывать притяжение в других направлениях. В центре тяжести планеты все разнонаправленные притяжения уравновешиваются и суммарное гравитационное притяжение равно нулю. Но что будет, если заменить планету на черную дыру, пространственную область, вся масса которой должна быть сосредоточена в единственной точке? Эта точка имеет бесконечную плотность, и при приближении к ней гравитационное притяжение становится бесконечным.

Тот факт, что данная функция не имеет смысла при х = 0, математики называют сингулярностью. Сингулярности бывают разные, но все они содержат точку, в которой функция не дает разумных результатов или имеет разрывный скачок от одного значения к другому.

Очень примитивный пример сингулярности можно получить, если взять монету и закрутить ее на столе. В отсутствие трения и сопротивления воздуха монета вечно продолжала бы вертеться с постоянной скоростью. Однако вследствие наличия рассеяния энергии монета вечно вертеться не будет. Вместо этого угол ее наклона к поверхности стола уменьшается, но, что интересно, пропорционально ему увеличивается скорость ее вращения. По мере приближения угла к нулю скорость в конце концов становится бесконечной. На последних стадиях вращения монета падает на стол, вибрируя и издавая жужжащий звук, частота которого быстро увеличивается, пока наконец дрожащая монета не останавливается.

Уравнения движения показывают, что скорость вращения монеты возрастает так, что через конечное количество времени она достигает бесконечного значения. Именно этот эффект мы слышим, когда увеличивается частота звука. Вертящаяся монета дает нам пример сингулярности. Разумеется, при этом действуют и другие эффекты, которые не допускают полного осуществления такой математической бесконечности, но этот пример показывает, что для получения бесконечности из физического уравнения не обязательно бросаться в черную дыру.

Даже Ньютоновы уравнения планетарного движения могут порождать сингулярности. Как я объяснял в конце первого «рубежа», математик Ся Чжихун показал, что четыре планеты можно расположить таким образом, что пятая планета будет вытолкнута из их среды и наберет бесконечную скорость за конечное время. Уравнения ничего не говорят о дальнейшей судьбе такой планеты, ожидающей ее после этой астрономической сингулярности.

Сингулярности обычно соответствуют моментам, в которые в игру вступает бесконечность и развитие событий после которых предсказать невозможно. Такие сингулярности могут возникать не только в физике. Известен пример статьи, которую опубликовали в 1960 г. Хайнц фон Фёрстер, Патриция Мора и Лоуренс Амиот, предсказывая серьезную сингулярность, которая должна произойти здесь, на Земле [96]. Если скорость роста населения и дальше будет следовать закономерностям, наблюдавшимся до 1960 г., то население нашей планеты должно стать бесконечным 13 ноября 2026 г. Особо отметим для суеверных, что этот день выпадет на пятницу.

Простейшая модель роста популяции утверждает, что этот рост имеет экспоненциальный характер. Например, численность некоторого вида может удваиваться каждые 50 лет. В такой модели популяция быстро разрастается, но никогда не становится бесконечной. Но анализ исторических данных, проведенный авторами этой статьи, говорил о том, что период удвоения численности человечества становится все короче и короче.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x