Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
y = ln x если e y = x

Или же, для всех действительных значений x ,

ln e x = x

Ваш калькулятор, например, может за долю секунды подсчитать, что ln 5 = 1,609…, однако это нам уже хорошо известно по тому, что e 1,609≈ 5. Подробнее же о функциях натурального логарифма мы поговорим в главе 11.

Отступление

Большинство профессиональных калькуляторов способно считать как натуральные, так и десятичные логарифмы. И лишь очень немногие ориентированы на другие значения b . Впрочем, проблемы тут никакой нет: одно основание довольно легко преобразовать в другое. Да-да, один логарифм является ключом ко всем остальным! На этот счет даже есть своя теорема, благодаря которой мы можем, например, взять логарифм по основанию 10 и найти его аналог по основанию b .

Теорема:Для любых положительных значений b и x

Магия математики Как найти x и зачем это нужно - изображение 424

Доказательство:Предположим, что y = log b x . Тогда b y= x . Прологарифмируем обе части: log b y= log x . Согласно второму замечательному пределу, y log b = log x . Следовательно, y = (log x )/(log b ), что и требовалось доказать.◻

ln x = (log x ) / (log e ) = (log x ) / (0,434…) ≈ 2,30 log x

log b x = (log x ) / (log 2) = (log x ) / (0,301…) ≈ 3,32 log x

Другие лики е

Как и число π, число e широко используется в математике. И, как и π, оно встречается подчас там, где вы совершенно не ожидаете его увидеть. Например, колоколообразная кривая, которую мы уже упоминали в главе 8, имеет формулу

картинка 425

а ее график, изображенный чуть ниже, – наверное, самый важный график в любом статистическом исследовании.

В той же главе 8 мы встречали e в формуле Стирлинга для множества n !:

Магия математики Как найти x и зачем это нужно - изображение 426

Позже, в главе 11, на примере e x и бесконечной последовательности

мы увидим важную связь между числом e и факториальным многочленом В - фото 427

мы увидим важную связь между числом e и факториальным многочленом.

В частности при x 1 Не правда ли очень легкий и быстрый способ определить - фото 428

В частности, при x = 1,

Не правда ли очень легкий и быстрый способ определить цифры составляющие - фото 429

Не правда ли, очень легкий и быстрый способ определить цифры, составляющие число e ?

Кстати, о цифрах… Вы наверняка уже заметили, что число e начинается с повторяющейся последовательности цифр

e = 2,718281828…

или, как любил повторять один мой преподаватель, «2,7 Эндрю Джексон, Эндрю Джексон», потому что седьмой президент США был избран именно в 1828 году. («Запоминалка» эта, кстати, отлично подходит и студентам-историкам: с помощью первых цифр числа e можно запомнить год избрания Джексона.) [33]Как тут не усомниться в иррациональной природе e ? Ведь если бы последовательность 1828 повторялась бесконечно, e было бы обычным рациональным числом. Но нет, дальше идут 6 цифр… 459045… (лично я запомнил их как значения углов равнобедренного прямоугольного треугольника).

Вмешивается e и в вопросы вероятности. Предположим, что раз в неделю вы покупаете лотерейный билет с шансом выиграть приз 1 к 100. Какова вероятность того, что за 100 недель вы что-нибудь да выиграете? Каждую неделю ваш «коэффициент удачи» равен 1/100 = 0,01, а «коэффициент невезения» – 99/100 = 0,99. Так как количество билетов неограниченно (то есть удача на этой неделе никак не зависит от невезения на прошлой), за весь срок получаем

(0,99)100 ≈ 0,3660

что очень близко

1/ e ≈ 0,3678794…

Нет, это не совпадение. Вспомните формулу, в которой мы впервые увидели e x :

Магия математики Как найти x и зачем это нужно - изображение 430

Если мы положим x = –1, то при любом большом значении n получим

Магия математики Как найти x и зачем это нужно - изображение 431

Когда n = 100, (0,99) 100будет примерно равно 1/ e . То есть ваши шансы выиграть приз за 100 недель составляют 1 – (1/ e ) ≈ 64 %.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x