Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Еще один пример – 78 ÷ 91. Здесь 78 × 11 = 858, то есть ответ будет начинаться с 857. Затем 999 – 857 = 142, поэтому 78 ÷ 91 = Магия математики Как найти x и зачем это нужно - изображение 63. Это число нам уже встречалось в главе 1, потому что 78/91 легко упрощается до 6/7.

Метод этот работает, потому что 91 × 11 = 1001. Поэтому в первом примере Магия математики Как найти x и зачем это нужно - изображение 64А так как 1/1001 = Магия математики Как найти x и зачем это нужно - изображение 65, мы получаем повторяющуюся часть нашего ответа из 583 × 999 = 583 000 – 583 = 582 417.

91 = 13 × 7 дает нам отличный способ делить числа на 13, усложняя их, чтобы получить в знаменателе 91. Например, 1/13 = 7/91, а так как 7 × 11 = 077, у нас получается

Магия математики Как найти x и зачем это нужно - изображение 66

Точно так же 2/13 = 14/91 = Магия математики Как найти x и зачем это нужно - изображение 67, потому что 14 × 11 = 154.

Магия 10, 11, 12 и модульной арифметики

Многое из того, что мы узнали о девятке, справедливо и в отношении других чисел. Вычисляя вычет по модулю 9, мы, по сути, заменяем числа тем, что осталось от их деления на 9. Не думаю, что для вас это большая новость. Каждый из нас делает это практически каждый день – с тех самых пор, когда мы научились называть время. Допустим, часы показывают ровно 8 (утра или вечера – неважно). Сколько они будут показывать через 3 часа? А через 15 часов? А через 27? А сколько они показывали 9 часов назад? Первые числа, которые возникают в сознании – 11, 23, 35, –1, но стоит нам вспомнить, что речь идет о часах, мы понимаем, что ответ на все эти вопросы будет один и тот же – 11 часов, ведь все заданные промежутки должны считаться от 12. Математики используют для этого такого вот вида запись:

Обобщая мы можем сказать что a b mod 12 где и a и b отличаются на - фото 68

Обобщая, мы можем сказать, что ab (mod 12), где и a , и b отличаются на число, кратное 12. Соответственно, ab (mod 12), если и a , и b при делении на 12 имеют один и тот же остаток. Иными словами, для любого целого значения m мы говорим, что два числа a и b равны (сравнимы) по модулю m , что обозначается как ab (mod m ) где и a , и b отличаются на число, кратное m . По сути, это значит, что

a b (mod m ), если a = b + qm при целом значении q .

Самая интересное в таких сравнениях по модулю – что ведут они себя абсолютно так же, как и обычные уравнения. Вот почему мы можем пользоваться здесь модульной (модулярной) арифметикой, то есть арифметическими действиями над абсолютными значениями чисел и спокойно их складывать, вычитать и умножать. Например, если ab (mod m ), а с – это любое целое число, верно будет, что

a + c b + c , а ac bc (mod m )

Итак, разнообразые сравнения можно складывать, вычитать и умножать. Например, если ab (mod m ), а cd (mod m ), значит,

a + c b + d , а ac bd (mod m )

Чуть более конкретно: так как 14 ≡ 2, а 17 ≡ 5 (mod 12), 14 × 17 ≡ 2 × 5 (mod 12), и это подтверждает, что 238 = 10 + (12 × 19). Следствием этого правила является то, что мы можем возводить сравнения по модулю в различные степени. Поэтому, если ab (mod m ), действует следующее правило степени:

b² a³ b³ ··· a n b n (mod m )

при положительном целом значении n .

Отступление

Почему работает модульная арифметика? Например, если ab (mod m ), а cd (mod m ), значит, a = b + pm , а c = d + qm для целых значений p и q . Следовательно, a + c = ( b + d ) + ( p + q ) m , а a + cb + d (mod m ). Далее, применив правило FOIL , получаем

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x