Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
ac = ( b + pm )( d + qm ) = bd + ( bq + pd + pqm ) m

Значит, ac и bd отличаются друг от друга на число, кратное m , что приводит нас к acbd (mod m ). Умножение соответствия ab (mod m ) на само себя дает a ² ≡ b ² (mod m ); повторение этого процесса опять-таки приводит нас к правилу возведения в степень.

То же правило возведения в степень делает число 9 таким особенным в десятеричной системе. Так как

10 ≡ 1 (mod 9)

то, согласно правилу возведения в степень, 10n ≡ 1n = 1 (mod 9) для любого значения n . Значит, например, число 3456 соответствует

3456 = 3(1000) + 4(100) + 5(10) + 6 ≡ 3(1) + 4(1) + 5(1) + 6 = 3 + 4 + 5 + 6 (mod 9)

А если 10 ≡ 1 (mod 3), становится понятно, почему мы можем простым сложением цифр определить, является ли число кратным 3 (или каким будет остаток при делении его на 3). Если бы мы проводили вычисления в другой системе – скажем, основанной на 16 (она называется шестнадцатеричной и используется в электротехнике и программировании), – то, исходя из 16 ≡ 1 (mod 15), мы могли бы простым сложением цифр определить, является ли число кратным 15 (или 3, или 5), или найти остаток при делении его на 15.

Но вернемся к более привычной десятеричной системе. Есть простой способ определить, кратно ли определенное число 11. Основывается он на том, что

10 ≡ –1 (mod 11)

Значит, 10 n≡ (–1) n(mod 11). Следовательно, 10² ≡ 1 (mod 11), 10³ ≡ (–1) (mod 11) и т. д. Число 3456, например, соответствует

3456 = 3(1000) + 4(100) + 5(10) + 6 ≡ –3 + 4 – 5 + 6 = 2 (mod 11)

То есть 3456 делится на 11 с остатком 2. Общее правило звучит так: число является кратным 11 только при условии, что мы приходим к числу, кратному 11 (например, 0, ± 11, ± 22….), при поочередном вычитании и сложении цифр. Давайте попробуем разобраться, делится ли число 31 415 на 11 без остатка? Достаточно посчитать 3 – 1 + 4 – 1 + 5 = 10, чтобы понять, что не делится, но сумма цифр следующего за ним целого 31 416 будет равна 11, поэтому 31 416 кратно 11.

Расчеты по модулю 11, кстати, используются для работы с ISBN [4]. Допустим, у вас есть книжка с десятизначным ISBN (номер с таким количеством цифр присваивался большинству книг до 2007 года). Эти цифры обозначают страну, в которой была издана книга, издательство и название, все, кроме последней, десятой, которую еще называют контрольной , – она нужна для того, чтобы превращать нагромождение цифр в стройную систему. То есть если десятизначный номер выглядит как a - bcd - efghi - j , тогда j выбирается на том основании, чтобы соответствовать

10 a + 9 b + 8 c + 7 d + 6 e + 5 f + 4 g + 3 h + 2 i + j ≡ 0 (mod 11)

Так, ISBN моей книжки «Секреты устного счета», изданной в 2006-м, – 0-307-33840-1, что соответствует

10(0) + 9(3) + 8(0) + 7(7) + 6(3) + 5(3) + 4(8) + 3(4) + 2(0) + 1 = 154 ≡ 0 (mod 11)

поскольку 154 = 11 × 14. В А что происходит, когда возникает необходимость в качестве контрольной цифры поставить 10? В этом случае вместо десятки ставят литеру X – она же римская десятка. Система ISBN хороша тем, что позволяет легко определить ошибку в случае, если одна из цифр введена неправильно. Например, если вы перепутали третью цифру, то общий результат окажется кратным 8: ± 8, ± 16… ± 80, а не 11 (вы ведь помните, что 11 у нас здесь – главное число?), что и укажет на ошибку. С помощью алгебры легко убедиться, что система способна обнаружить ошибку даже в том случае, если две цифры перепутаны местами. Предположим, мы перепутали цифры c и f . При этом порядок остальных цифр верен, то есть единственное, что делает верный результат неверным – это значения c и f . Старый результат основан на 8 c + 5 f , новый – на 8 f + 5 c . Их разность (8 f + 5 c ) – (8 c + 5 f ) = 3( f – c ), о которой мы знаем, что она не кратна 11. Следовательно, и новый результат не кратен 11.

В 2007 г. издатели перешли на тринадцатизначную систему ISBN, основанную уже на модуле 10 вместо 11. То есть номер abc - d - efg - hijkl - m правилен только в том случае, если он соответствует

a + 3 b + c + 3 d + e + 3 f + g + 3 h + i + 3 j + k + 3 l + m ≡ 0 (mod 10)

Похожая система, основанная на модуле 10, используется для проверки правильности штрихкодов, номеров кредитных и дебетовых карточек. Еще модульная арифметика играет важную роль в проектировании электронных схем и интернет-систем, обеспечивающих финансовую безопасность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x