А секрет вот в чем. Чтобы узнать большее число, возьмите последнюю цифру результата (в нашем случае это 6), прибавьте к предшествующему ей числу (то есть 12) и разделите на 2. Так мы узнаем, что первое число – (12 + 6)/2 = 18/2 = 9. Второе число можно найти, вычтя из первого (9) последнюю цифру ответа, то есть 9 – 6 = 3.
Вот еще пара примеров – попрактиковаться. При ответе 82 большее из загаданных чисел – (8 + 2)/2 = 5, меньшее – 5 – 2 = 3. При ответе 137 большее – (13 + 7)/2 = 10, меньшее – 10 – 7 = 3.
Как же все-таки это работает? Допустим, загаданные вами числа – это X и Y , при этом X больше или равен Y . Согласно алгебраическим методам и инструкциям, показанным в таблице, мы увидим, что после пятого шага получается 10 ( X + Y ) + ( X – Y ).
И какой от этого толк, спросите вы? Обратите внимание, что число, получающееся после 10( X + Y ) будет обязательно заканчиваться на 0, а цифра (или цифры) перед этим нолем – сумма X + Y . Так как X и Y у нас находятся в пределах от 1 до 10, а X больше или равен Y , разность X – Y неизбежно будет однозначным числом (от 0 до 9). Это означает, что последней цифрой результата будет число, равное X – Y . Например, если вы загадывали 9 и 3, X = 9, а Y = 3. Значит, результат после пятого шага должен начинаться с X + Y = 9 + 3 = 12, а заканчиваться X – Y = 9 – 3 = 6, дающими вместе 126. А раз уж мы знаем X + Y и X – Y , мы можем взять их среднее арифметическое, чтобы получить (( X + Y ) + ( X – Y ))/2 = X . В поисках Y мы можем посчитать (( X + Y ) – ( X – Y ))/2 (в нашем случае – (12 – 6)/2 = 6/2 = 3), но мне куда более легким способом кажется просто взять большее число и вычесть из него последнюю цифру ответа (то есть 9 – 6 = 3), потому что X – ( X – Y ) = Y .
Отступление
Если вы хотите еще немного пощекотать нервы себе и своему зрителю, чья рука – гарантирую вам – немедленно потянется за калькулятором, попросите его загадать любые два числа от 1 до 100. И следуйте тем же инструкциям с одним лишь небольшим изменением: в третьем шаге попросите умножить результат не на 10, а на 100. То есть если ваш зритель, например, начал с 42 и 17, после пятого шага у него должно получиться 5925. Ответ вы можете составить, взяв из остатка две последние цифры и подсчитав их среднее арифметическое. Большим числом здесь будет (59 + 25)/2 = 84/2 = 42. А чтобы узнать меньшее, вычтите из большего две последние цифры ответа, в нашем случае – 42 – 25 = 17, искомое число. Объяснение будет по большому счету таким же, что и ранее – единственным исключением станет процедура после пятого шага: ответ будет 100( X + Y ) – ( X – Y ), где X – Y – две последние цифры результата.
Еще один пример: если ответ получился 15 222 (то есть X + Y = 152, а X – Y = 22), большее из загаданных чисел – это (152 + 22)/2 = 174/2 = 87, а меньшее – 87 – 22 = 65.
В детстве любимым моим числом была девятка: ее магия мне казалась бесконечной, неисчерпаемой. Просто следуйте следующим инструкциям и увидите все сами:
1. Задумайте число от 1 до 10 (или выберите большее целое число; если хочется, можете воспользоваться калькулятором).
2. Умножьте его на 3.
3. Прибавьте 6.
4. Снова умножьте на 3.
5. Теперь на 2, если хотите.
6. Сложите между собой цифры своего числа. Если в результате у вас получилось однозначное число, остановитесь.
7. А если двузначное, снова сложите между собой цифры своего результата.
8. Сконцентрируйтесь на ответе.
У меня стойкое ощущение, что у вас получилось 9. Правильно? Если нет – проверьте свои вычисления.
Что такого волшебного в девятке? Именно об этом мы и поговорим в этой главе; а еще мы заглянем в параллельное измерение, в котором числа 12 и 3 функционально друг от друга ничем не отличаются. Первое магическое свойство числа 9 становится явным, когда смотришь на ряд получаемых от него произведений:
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144…
Что общего между этими числами? Если вы сложите между собой цифры каждого из них, вы гарантированно получите 9. Давайте проверим: 18 состоит из 1 + 8 = 9, 27 – из 2 + 7 = 9, а, например, 144 – из 1 + 4 + 4 = 9. Постойте-ка, вроде есть одно исключение – 99. Сумма его цифр – 18, но 18 – это произведение 9 и 2. Вывод, который мы сделаем, может быть, и знаком вам по начальной школе. Чуть позже в этой главе мы приведем его объяснение. Так вот:
Читать дальше
Конец ознакомительного отрывка
Купить книгу