( x + 5) ( x – 5) = x ² + 5 x – 5 x – 25 = x ² – 25
Главное, что нужно запомнить – формула разности квадратов двух переменных :
( x + y )( x – y ) = x ² – y ²
Мы уже пользовались ей в главе 1, в примере, когда учились в уме возводить в квадрат числа. Способ этот основан на алгебраической формуле:
A ² = ( A + d )( A – d ) + d ²
Сначала давайте удостоверимся в правильности этой формулы. В отличие от формулы квадратов здесь мы имеем [( A + d )( A – d )] + d ² = [ A ² – d ²] + d ² = A ². Стало быть, это действительно для всего диапазона значений A и d . На практике буквой A обозначается число, возводимое в квадрат, а d – его разность с ближайшим круглым числом. Например, чтобы возвести в квадрат 97, мы принимаем d за 3, чтобы получить
97² = (97 + 3) (97 – 3) + 3² = (100 × 94) + 9 = 9409
Отступление
А вот несколько рисунков, доказывающих закон квадратичной зависимости. На них показано, как геометрическая фигура с площадью x ² – y ² может быть преобразована в прямоугольник с площадью ( x + y )( x – y ).
В главе 1 мы научились перемножать между собой близкие по значению числа. Но если там мы оперировали числами, близкими к сотне и начинающимися с одной и той же цифры, то здесь, используя элементы алгебры, мы можем поговорить и о более интересных примерах. Скажем, вот алгебраическая интерпретация метода сближения:
( z + a )( z + b ) = z ( z + a + b ) + ab
Это становится возможным, потому что ( z + a )( z + b ) = z ² + zb + za + ab , а значит, мы можем вынести за скобки из первых трех элементов сомножитель z . Формула эта работает для любых значений, хотя обычно под z мы понимаем число, заканчивающееся на ноль. Чтобы перемножить, например, 43 × 48, мы берем за z число 40, соответственно, a = 3, b = 8. И тогда наша формула говорит нам, что
43×48 = (40 + 3) (40 + 8) = 40(40 + 3 + 8) + (3 × 8) = (40 × 51) + (3 × 8) = 2040 + 24 = 2064
Обратите внимание, что при сложении наши множители дают 43 + 48 = 91 – тот же результат, что и менее сложные для подсчетов 40 + 51 = 91. Это совсем не случайно, ведь алгебра говорит нам, что сумма изначальных множителей представляет собой ( z + a ) + ( z + b ) = 2 z + a + b , что является в то же время суммой более простых чисел z и z + a + b . А значит, мы можем легко округлять изначальные числа до удобных нам при подсчетах. Последнее вычисление, например, может быть сведено к z = 50, a = –7 и b = –2, и умножать мы будем 50 на 41. (Легко понять, откуда взялось 41: 43 + 48 = 91 = 50 + 41.) Следовательно,
43 × 48 = (50 – 7)(50 – 2) = (50 × 41) + (–7 × –2) = 2050 + 14 = 2064
Отступление
В главе 1 мы использовали этот метод для чисел больше 100. Но он отлично работает и с меньшими величинами, например,
96 × 97 = (100 – 4)(100 – 3) = (100 × 93) + (–4 × –3) = 9300 + 12 = 9312
Обратите внимание, что 96 + 97 = 193 = 100 + 93 (на деле я всего лишь сложил две последние цифры, 6 и 7, чтобы узнать, что сотню нужно умножать на число, заканчивающееся на 3 и, скорее всего, равное 93). Со временем, получив опыт, вы научитесь не обращать внимания на минусы и умножать не отрицательные числа, а их положительные «отражения». То есть
97 × 87 = (100 – 3)(100 – 13) = (100 × 84) + (3 × 13) = 8400 + 39 = 8439
Этот же метод можно применить к парам чисел, одно из которых чуть меньше, а другое – чуть больше 100, только в конце вместо сложения вам нужно произвести вычитание. Например,
109 × 93 = (100 + 9) (100 – 7) = (100 × 102) – (9 × 7) = 10 200 – 63 = 10 137
И опять же, число 102 можно получить двумя способами: либо из 109 – 7, либо из 93 + 9, либо из 109 + 93 – 100 (ну и четвертый вариант – сложить последние цифры начальных чисел: 9 + 3 скажут нам, что число будет заканчиваться на 2, и этой информации может быть вполне достаточно). Практикуясь, вы научитесь легко перемножать близкие друг к другу числа. Посмотрите на несколько несложных примеров с трехзначными числами. Имейте в виду, что a и b здесь числа, в которых больше одного знака.
Читать дальше
Конец ознакомительного отрывка
Купить книгу