Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте проиллюстрируем все это примером с конкретными числами:

23 × 45 = (20 + 3)(40 + 5) = (20 × 40) + (20 × 5) + (3 × 40) + (3 × 5) = 800 + 100 + 120 + 15 = 1035
Отступление

Почему работает правило FOIL? Согласно закону дистрибутивности (по отношению к части со сложением, идущей на первом месте),

( a + b ) e = ae + be

А теперь вместо e подставим c + d , что даст нам

( a + b )( c + d ) = a ( c + d ) + b ( c + d ) = ac + ad + bc + bd
Последняя часть становится возможной благодаря повторному применению закона - фото 27

Последняя часть становится возможной благодаря повторному применению закона дистрибутивности. Если вы предпочитаете геометрически визуализированное доказательство (при условии, что a, b, c, d – положительные величины), то вот вам прямоугольник, площадь которого можно найти двумя различными способами.

С одной стороны, площадь можно высчитать с помощью ( a + b )( c + d ). С другой – мы можем разбить большой прямоугольник на четыре с площадями ac, ad, bc и bd . Значит, общая площадь будет равна ac + ad + bc + bd . Знак равенства между двумя этими подходами обеспечивает правило FOIL .

А теперь давайте посмотрим, как работает магия правила FOIL . Бросьте две игральные кости и посмотрите таблицу, которая приведена чуть ниже. Допустим, вы выкинули 6 и 3. На обратных сторонах костей будет, соответственно, 1 и 4.

В нашем примере результат будет равен 49 И сколько бы вы ни бросали обычные - фото 28

В нашем примере результат будет равен 49. И сколько бы вы ни бросали обычные шестигранные кости, результат будет тот же. Дело в том, что сумма чисел на противоположных сторонах стандартной игральной кости всегда равна 7. То есть если обозначить выпавшие числа буквами x и y , их парами будут 7 – x и 7 – y . Алгебра переделывает нашу таблицу таким вот образом:

Обратите внимание на подсчет в третьей строке x и y при умножении дают xy - фото 29

Обратите внимание на подсчет в третьей строке (– x и – y при умножении дают xy со знаком плюс). К результату 49 можно прийти и другим, менее алгебраическим, способом: достаточно просто посмотреть на второй столбец таблицы и увидеть там те самые четыре числа, которые нужны нам для «запуска» FOIL: ( x + (7 – x ))( y + (7 – y )) = 7 × 7 = 49.

На уроках алгебры правило FOIL обычно применяют для решения таких, например, задач:

( x + 3)( x + 4) = x ²+ 4 x + 3 x +12 = x ² + 7 x + 12

В крайней правой части число 7 (которое в этом случае называется коэффициентом числа х ) есть сумма 3 и 4; 12 же (здесь он будет постоянным членом ) – их произведение. Ну а получить ответ с нашим-то опытом – дело элементарное: так как 5 + 7 = 12, а 5 × 7 = 35, получаем

( x + 5)( x + 7) = x ² + 12 x + 35

С отрицательными величинами это тоже отлично работает, и вот тому подтверждение: в нашем первом примере мы начинаем с того, что 6 + (–2) = 4, а 6 × (–2) = –12.

( x + 6)( x – 2) = x ² + 4 x – 12
( x + 1)( x – 8) = x ² – 7 x – 8
( x – 5)( x – 7) = x ² – 12 x + 35

А вот примеры, когда известные числа у нас одинаковые:

( x + 5)² = ( x + 5)( x + 5) = x ² + 10 x + 25
( x – 5)² = ( x – 5)( x – 5) = x ² – 10 x + 25

Обратите внимание, кстати, что ( x + 5)² ≠ x ² + 25: ошибку эту делают почти все, кто только начинает познавать азы алгебры. Но куда интереснее обстоят дела, когда у нас есть два одинаковых числа с разными знаками. Например, так как 5 + (–5) = 0,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x