Алексей Лобанов - Энциклопедия финансового риск-менеджмента

Здесь есть возможность читать онлайн «Алексей Лобанов - Энциклопедия финансового риск-менеджмента» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Жанр: management, management, popular_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Энциклопедия финансового риск-менеджмента: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Энциклопедия финансового риск-менеджмента»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга – первое в России издание учебно-энциклопедического характера, в котором в соответствии с международными стандартами освещаются основные вопросы финансового риск-менеджмента. Издание дополнено новыми материалами по организационным аспектам риск-менеджмента, моделям эволюции процентных ставок, рискам страхования банковских вкладов и анализу макроэкономических рисков. Рассмотрены современные методы количественной оценки и управления финансовыми рисками, теория экстремальных значений, соглашения о форвардной процентной ставке и др. Дан систематизированный обзор методов количественного анализа, используемых в риск-менеджменте, моделей ценообразования и стратегий применения производных финансовых инструментов. Приведен обзор основных положений Нового базельского соглашения по капиталу 2004 г., выполненных на основе последней редакции соглашения от ноября 2006 г.
Книга предназначена для профессионалов, непосредственно занимающихся оценкой и управлением рисками, преподавателей, студентов и аспирантов экономических факультетов вузов. Она также может использоваться для подготовки к сдаче международных экзаменов по финансовому риск-менеджменту на получение сертификатов Financial Risk Manager (FRM®) и Professional Risk Manager (PRM®).

Энциклопедия финансового риск-менеджмента — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Энциклопедия финансового риск-менеджмента», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Случайная величина ξ называется дискретной случайной величиной (discrete random variable), если она принимает лишь конечное или счетное число различных значений.

Чтобы задать дискретную случайную величину, достаточно указать закон распределения вероятностей этой случайной величины в следующем виде:

т е для каждого возможного значения случайной величины ξ задать вероятность - фото 204

т. е. для каждого возможного значения случайной величины ξ задать вероятность этого значения.

Функция распределения вероятностей дискретной случайной величины ξ показана на - фото 205

Функция распределения вероятностей дискретной случайной величины ξ показана на рис. 1.17.

Основные числовые характеристики дискретной случайной величины ξ определяются следующим образом:

Свойства математического ожидания и дисперсии Пример 148Дана 10 ная - фото 206
Свойства математического ожидания и дисперсии
Пример 148Дана 10 ная облигация с полугодовыми купонами продающаяся по - фото 207

Пример 1.48.Дана 10 %-ная облигация с полугодовыми купонами, продающаяся по номиналу, когда до ее погашения остается 20,5 года. Инвестор считает, что доходность к погашению этой облигации через 6 месяцев может принять следующие значения:

Законы распределения вероятностей цены облигации η и годовой реализуемой - фото 208

Законы распределения вероятностей цены облигации (η) и годовой реализуемой доходности за 6 месяцев (τ) указаны в таблице:

Например если ξ 110 то Математическое ожидание цены облигации через 6 - фото 209

Например, если ξ = 11,0 %, то

Математическое ожидание цены облигации через 6 месяцев и ее дисперсия могут - фото 210

Математическое ожидание цены облигации через 6 месяцев и ее дисперсия могут быть найдены следующим образом:

Таким образом ожидаемое значение реализуемой доходности облигации за 6 месяцев - фото 211

Таким образом, ожидаемое значение реализуемой доходности облигации за 6 месяцев равно 11,96 %, а ее стандартное отклонение составляет 14,81 %.

Закон совместного распределения вероятностей двух случайных величин ξ и η может быть задан следующим образом:

Энциклопедия финансового рискменеджмента - изображение 212

P ij – это вероятность того, что случайная величина ξ принимает значение X i, а случайная величина η – значение Y j, i = 1, 2, 3…, j = 1, 2, 3…, причем

Энциклопедия финансового рискменеджмента - изображение 213

Зная закон совместного распределения вероятностей двух случайных величин, можно найти закон распределения вероятностей каждой из этих случайных величин, так как

Дискретные случайные величины ξ и η называются независимыми если Для - фото 214

Дискретные случайные величины ξ и η называются независимыми, если

Для независимых случайных величин справедливы следующие два равенства - фото 215

Для независимых случайных величин справедливы следующие два равенства:

Ковариация covariance между двумя дискретными случайными величинами ξ и η - фото 216

Ковариация (covariance) между двумя дискретными случайными величинами ξ и η определяется равенством

Свойства ковариации Корреляция correlation между двумя случайными - фото 217
Свойства ковариации
Корреляция correlation между двумя случайными величинами ξ и η определяется - фото 218

Корреляция (correlation) между двумя случайными величинами ξ и η определяется следующим образом:

Случайные величины называются некоррелированными если корреляция между ними - фото 219

Случайные величины называются некоррелированными, если корреляция между ними равна 0.

Свойства корреляции
Пример 149 Совместное распределение вероятностей случайных величин ξ и η - фото 220

Пример 1.49. Совместное распределение вероятностей случайных величин ξ и η приведено в таблице:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Энциклопедия финансового риск-менеджмента»

Представляем Вашему вниманию похожие книги на «Энциклопедия финансового риск-менеджмента» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Энциклопедия финансового риск-менеджмента»

Обсуждение, отзывы о книге «Энциклопедия финансового риск-менеджмента» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x