Майкл Рейнор - Как думают великие компании - три правила

Здесь есть возможность читать онлайн «Майкл Рейнор - Как думают великие компании - три правила» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Азбука Бизнес, Азбука-Аттикус, Жанр: management, management, popular_business, management, foreign_business, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как думают великие компании: три правила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как думают великие компании: три правила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В любой отрасли можно обнаружить компании, которые сталкиваются с теми же трудностями, что и конкуренты, но – в отличие от них – неизменно достигают выдающихся результатов. Так что же они делают иначе, чем остальные? И можем ли мы чему-то у них научиться?
В поисках ответов на эти вопросы Майкл Рейнор и Мумтаз Ахмед, топ-менеджеры крупнейшей международной консалтинговой компании Deloitte, проанализировали данные по 25 000 компаний за 45 лет. В результате уникального по своему масштабу исследования им удалось сформулировать самые важные на их взгляд правила, которыми следует руководствоваться при планировании деятельности и стратегических маневров в современных рыночных условиях.

Как думают великие компании: три правила — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как думают великие компании: три правила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы вам было легче понять наш подход к этой проблеме, ниже мы приводим в сокращенном виде таблицу 6 из главы 3, в которой оценивается вероятность связи между относительной конкурентной позицией и относительной рентабельностью в наших выборках с использованием попарных сравнений (в таблице 6 мы рассматриваем наши тройки как целое, и поэтому в каждой из них одна компания занимает «промежуточную» конкурентную позицию; при попарных сравнениях можно сравнивать только ценовые и неценовые позиции).

При сравнении «чудотворцев» с «середнячками» легко видеть, что семь «чудотворцев» имеют неценовую конкурентную позицию, и два имеют ценовую позицию. В каждом случае между «чудотворцами» и «середнячками» имеются определенные различия.

Эта выборка из 9 попарных сравнений составляет 5,2 % от нашей группы из 174 «чудотворцев», и возможные ложноотрицательные результаты здесь не учитываются. Если бы наша выборка была абсолютно репрезентативной по отношению к нашей группе в целом, мы могли бы с полным основанием сделать вывод, что «чудотворцы» имеют неценовые конкурентные позиции относительно «середнячков» в течение 78 % рассматриваемого времени, то есть в подавляющем большинстве случаев, и это убедительно доказывало бы наличие сильной связи между выдающейся рентабельностью и неценовыми конкурентными позициями.

Таблица 51 . Относительные конкурентные позиции при попарном сравнении

Источник анализ выполненный авторами При ссылках на нашу группу из - фото 140

Источник: анализ, выполненный авторами.

При ссылках на нашу «группу» из «чудотворцев» и «стайеров» мы игнорируем проблему возможных ложноотрицательных результатов.

Однако наша выборка, скорее всего, не вполне репрезентативна, прежде всего – из-за ее небольшого размера. Получить экстремальный результат в небольшой выборке гораздо легче, чем в большой. В обычном случае можно было бы рассчитать доверительный интервал для нашей оценки 78 %, но для малых выборок этот метод непригоден. Вместо этого мы намереваемся проверить вероятность того, что наша выборка могла быть получена из распределения, в котором равновероятными являются три возможных результата. Так, если мы предположим, что компания-«чудотворец» с одинаковой вероятностью может иметь неценовую, ценовую и такую же относительную конкурентную позицию, как и «середнячок», мы сможем оценить вероятность получения выборки, которую мы фактически получили.

Если использовать аналогию, это можно уподобить оценке вероятности того, что монета действительно симметрична, по результатам определенного числа бросков. Если предполагается, что монета симметрична, и если из 10 бросаний выпадает 6 орлов, то вероятность несимметричности монеты с повышением частоты выпадения орлов равна вероятности выпадения 6 и более орлов из 10 бросаний, то есть 38 %. На этом этапе оценка становится субъективной. Означает ли это, что вероятность того, что монета симметрична, составляет только 38 % ? Или это означает, что монета, вероятно, симметрична? Если бы это было возможно, вы собрали бы больше данных. Если вы не можете собрать больше данных, необходимо сделать вывод на основании имеющихся данных или вообще воздержаться от выводов.

При тестировании моделей со множеством ячеек, как в приведенной выше таблице, обычно ищут значимую кластеризацию в таблицах сопряженности признаков с помощью так называемой статистики хи-квадрат. Однако для малых выборок (например, когда N < 30) и для случаев, когда ожидаемое число ячеек меньше 5 более чем для 20 % ячеек, этот метод непригоден. Например, если у нас 9 компаний в столбце или строке, то следует ожидать, что число компаний в каждой ячейке будет равно 9/3, что меньше 5.

С учетом этого мы продолжим аналогию с моделированием. Предположим, что мы бросаем гипотетическую «симметричную» трехстороннюю монету k раз, где k – число компаний в строке или столбце. Затем мы оцениваем вероятность попадания m или более смоделированных компаний в одну и ту же ячейку. Мы повторяем этот процесс 10 миллионов раз, вычисляя процент времени, в течение которого m или более моделируемых компаний из k попадают в одну ячейку.

Таким образом, на самом деле мы проверяем, можно ли ожидать, что не меньше чем m компаний из k могут собраться вместе в любой из трех ячеек в строке (или столбце) случайным образом. Итак, приведенные выше значения в % – это вероятности того, что наблюдаемая кластеризация не является случайной («случайной» означает, что все фирмы имеют одинаковую вероятность [p = ⅓] попадания в каждую ячейку). Однако мы не утверждаем, что вся группа выглядит как наша выборка. Скорее мы утверждаем, что судя по нашей выборке, чтобы сделать выгодное вложение, нужно учитывать наличие систематических связей между относительной конкурентной позицией и результатами попарных сравнений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как думают великие компании: три правила»

Представляем Вашему вниманию похожие книги на «Как думают великие компании: три правила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Степан Чолак - Три правила леса
Степан Чолак
Холли Риверс - Три правила фантома
Холли Риверс
Отзывы о книге «Как думают великие компании: три правила»

Обсуждение, отзывы о книге «Как думают великие компании: три правила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x