Оптрон.
Применение оптрона.
От оптрона к оптической линии связи
Однажды нашей лаборатории понадобилось изготовить только что описанный датчик скорости вращения вала. Включили светодиод, но подвели к нему питание не от источника постоянного тока, а от звукового генератора, чтобы на выходе фотодиода получить переменный звуковой сигнал, который легко усилить и измерить. Стали добиваться предельной чувствительности системы, подбирая режим элементов, схему усилителя.
А как проверить чувствительность? Очень просто: отодвигать фотодиод от светодиода. По мере совершенствования устройства добились расстояния между излучателем и приемником более метра. И тут возникла мысль: а не снабдить ли светодиод и фотодиод собирающими линзами? Нашли линзу, попробовали поставить ее на пути, да так, чтобы фотодиод оказался в фокусе. Сигнал возрос, но отодвигать фотодиод дальше не позволяли размеры лаборатории. Не беда. Посчитали теоретически. Получилось, что даже с двумя относительно небольшими линзами диаметром около 40 мм дальность действия нашего оптрона достигает километра! И вторая мысль — вместо монотонного писка звукового генератора передавать обычный человеческий голос. Разумеется, мы уподобились современным изобретателям велосипедов — светотелефон давно известен, — но зато как интересно своими руками сделать подобную конструкцию. Светотелефон был изготовлен. Каждый аппарат действовал всего от двух элементов с напряжением 1,5 В, которых хватило на целый сезон. Дальность действия не превысила, правда, полутора километров, но ведь использовались слабенький светодиод с некогерентным излучением и случайно оказавшиеся под рукой линзы.
Линии оптической связи с лазерами в качестве источников света могут обеспечивать дальность в десятки и сотни километров; практически она ограничена только поглощением света в атмосфере. Значит, в космосе..? В космосе лазерная линия связи может перекрыть миллионы километров благодаря очень малой расходимости в пространстве лазерного луча.
У оптической линии связи есть еще одно громадное достоинство. Любой канал связи обычно бывает узкополосным. Во всяком случае полоса передаваемых частот оказывается не более нескольких процентов частоты несущей. На частоте 10 ГГц (длина волны 3 см) в СВЧ диапазоне можно передать полосу частот 100 МГц, что примерно соответствует скорости передачи двоичной информации 100 Мбит/с. А в КВ диапазоне на частоте 10 МГц (длина волны 30 м) она не может превзойти 100 кбит/с. да и передавать полосу частот 100 кГц на КВ не позволит ни одна инспекция электросвязи.
Иное дело в оптическом диапазоне. При длине волны 1 мкм частота несущей составляет 3·10 8МГц, а полоса передаваемых частот может достигать 3·10 6МГц, или 3000 ГГц. Скорость передачи информации 3000 Гбит/с! Пока это фантастика, но теоретически возможная. В настоящее время скорость передачи информации в оптическом диапазоне ограничена только инерционностью фотоприемников, и пределы ее повышения практически неисчерпаемы. Это позволяет передавать огромные объемы информации. В Москве давно уже функционирует линия оптической связи между двумя высотными зданиями. Она используется как часть городской телефонной сети. Тоненький красный луч лазера переносит многие тысячи телефонных разговоров. Представляете, сколько меди, свинца и пластика оказалось возможным не укладывать под землю.
Теперь мы вплотную приблизились к очень интересной теме.
Волоконная оптика
Трудно предположить, что Москву часто будет окутывать непроницаемо густой туман и лазерная линия связи перестанет функционировать. И все-таки, а вдруг? Хотелось бы иметь линию связи, совершенно не зависящую от погодных условий. Такие линии есть — это кабели. Но они дороги, на их изготовление идет масса дорогих цветных металлов, а пропускная способность все время остается недостаточной. Возникла идея пустить световой сигнал по стеклянному волокну.
Устройство стекловолоконного «кабеля» непростое. Сердцевина его имеет больший показатель преломления, чем периферийная часть. А свет может преломляться в неоднородной среде в сторону среды с большим показателем преломления. В этом случае пологие световые лучи будут всегда отклоняться к центру волокна и никогда не выйдут наружу. В зависимости от технологии изготовления волокна показатель преломления может изменяться либо плавно, либо скачкообразно, если в процессе изготовления «сердцевину» волокна покрыть еще одним слоем «легкого» стекла. В этом случае свет будет испытывать полное внутреннее отражение на границе раздела слоев и опять же не сможет покинуть «сердцевину» стекловолокна.
Читать дальше