Применение сердечников из магнитодиэлектриков позволяет в несколько раз уменьшить сопротивление потерь и, следовательно, повысить добротность Q контура. Другие пути уменьшения потерь — это применение в качестве С к керамических, слюдяных и воздушных конденсаторов, обладающих малыми потерями; монтаж высокочастотных цепей короткими проводами; использование для каркаса катушки материала с малыми потерями, а также ряд других мер. В любительских условиях не всегда имеется возможность да и не всегда есть смысл принимать все возможные меры для уменьшения потерь, и поэтому часто приходится мириться с несколько пониженной добротностью контуров.
Добротность Q контура зависит не только от потерь в нем, но и от соотношения между индуктивностью L к и емкостью С к ; чем больше L к и чем меньше С к , тем выше добротность. С другой стороны, из формулы для определения f 0 (рис. 47, лист 73) видно, что одну и ту же частоту собственных колебаний можно получить при различных соотношениях L к и С к . Иными словами, если емкость С к уменьшить, например, в 10 раз и во столько же раз увеличить индуктивность L к , то произведение L кC к останется неизменным, а значит, не изменится и частота f 0 .
Из всего этого можно сделать простой вывод: если хочешь повысить добротность контура, уменьшай его емкость и увеличивай индуктивность (в одно и то же число раз, иначе изменится частота!).
Если посмотреть на схему самых различных приемников и передатчиков, то можно увидеть, что в контурах почти всегда используются конденсаторы, емкость которых не превышает нескольких сотен пикофарад. А ведь если бы соотношение между L к и С к не влияло на величину добротности, то мы, пожалуй, еще подумали, каким путем легче построить контур — применяя громоздкую катушку большой индуктивности и конденсатор малой емкости или же используя конденсатор емкостью в несколько микрофарад и простейшую катушку, содержащую всего два-три витка.
В заключение необходимо отметить, что в погоне за высокой добротностью нельзя беспредельно увеличивать индуктивность и уменьшать емкость контура. Здесь существует ряд ограничений, разбирать которые мы не имеем возможности, так как это отвлечет нас от основной задачи.
Итак, мы выяснили, что в контуре, состоящем из конденсатора и катушки, могут возникнуть собственные электромагнитные колебания и что постепенно эти колебания затухают. Чем меньше потери энергии в контуре, то есть чем выше его добротность, тем медленнее затухают в нем собственные колебания.
Но как можно использовать контур в приемнике и какое значение при этом будет иметь добротность?.. К выяснению этих вопросов мы сейчас и приступаем.
РЕЗОНАНС
Давайте раскачивать маятник в такт с его собственными колебаниями. Качнулся маятник вправо — и мы слегка подтолкнем его вправо; двигается маятник в противоположную сторону — и мы опять поможем ему, подтолкнув влево. Если мы будем подталкивать маятник с той же частотой, с какой он сам колеблется, то колебания не только перестанут затухать, но станут намного сильнее. Произойдет это потому, что подталкивание маятника скомпенсирует потери энергии, из-за которых раньше колебания затухали. Более того, наши подталкивания помогут маятнику преодолеть сопротивление воздуха и трение в подшипнике и увеличить амплитуду отклонений. Чем меньше общие потери энергии, тем больше будет амплитуда отклонений при толчках одной и той же силы.
Подобную картину можно наблюдать и в колебательном контуре, если с помощью специального генератора пропустить через этот контур переменный ток (рис. 52), частота которого равна частоте собственных (свободных) электромагнитных колебаний. В этом случае, который получил название «резонанс», в контуре происходит ряд интересных явлений, широко используемых в радиотехнике.
Рис. 52. Колебательный контур, в отличие от обычного сопротивления, по-разному пропускает токи различных частот. Наибольший ток в контуре и наибольшее напряжение на нем будет при резонансе, то есть тогда, когда частота подводимого переменного тока (например, от специального генератора) окажется равной частоте собственных колебаний контура.
Ток, поступающий от генератора, действуя в такт с переменным током собственных колебаний, как бы «подталкивает» движущиеся заряды, помогая им преодолеть сопротивление потерь. Более того, благодаря «помощи» генератора амплитуда тока в контуре при резонансе сильно увеличивается. Правда, с увеличением тока возрастут и потери энергии: ведь контурный ток проходит по сопротивлению R к и, чем больше ток, тем больше энергии будет теряться на этом сопротивлении. Поэтому при резонансе автоматически установится такой контурный ток, при котором энергия, поступающая от генератора, сможет компенсировать потери в контуре. Совершенно очевидно, что, чем меньше эти потери, то есть чем выше добротность Q контура, тем сильнее будет контурный ток при одной и той же энергии, поступающей от генератора.
Читать дальше