Л. — Правильно. Поэтому скажи мне, что ограничивает усиление твоего усилителя на низких частотах.
Н. — Нет ничего легче! Ограничения вносят реактивные сопротивления конденсаторов, особенно конденсаторов С 1 и С 2 в твоей схеме на рис. 37. конденсатор С 1 вводит отрицательную обратную связь, а С 2 плохо связывает два каскада. При желании бороться с этими неприятными явлениями я могу увеличить емкость этих конденсаторов.
Л. — Согласен, но возможности этого пути весьма ограниченны. Емкость конденсатора С 1 и так достигает нескольких микрофарад и значительно увеличить ее невозможно, даже если ты доведешь ее до 100 и особенно до 1000 мкф, то неизбежные в таких конденсаторах токи утечки могут влиять на напряжение смещения. Но перейдем к конденсатору С 2 ; я не советую тебе превышать 1 мкф, ибо в противном случае он станет слишком громоздким, а это приведет к значительным паразитным емкостям, не говоря уже о неизбежном токе утечки, который может сделать положительной сетку следующей лампы. Как видишь, этот путь не дает хороших результатов. Чтобы конденсатор С 1 не мешал, его лучше вообще убрать.
Изменим смещение
Н. — Как так? Ведь тогда потенциал катода перестанет быть постоянным и лампа не станет усиливать.
Л. — Позволь мне внести поправку: усиление уменьшится, но лампа будет продолжать усиливать. Своими действиями мы ввели напряжение (напряжение катод — корпус, вернее его переменную составляющую), которое вычтется из входного напряжения, т. е. создастся отрицательная обратная связь. А как ты знаешь, отрицательная обратная связь снижает усиление, но одновременно уменьшает искажения и шум, а также дает нам другие выгоды.
Н. — Я высокого мнения о положительных качествах отрицательной обратной связи, но тем не менее очень прискорбно потерять часть усиления, тем более что оно и без того значительно урезано из-за применения низкоомной анодной нагрузки, позволяющей пропустить высокие частоты.
Л. — Мы можем избежать потерь. Для начала можно соединить катод лампы с корпусом, а отрицательное напряжение смещения подать на сетку лампы…
Н. — И из нашей эпохи прогресса электроники ты возвращаешь меня к первым дням истории радио.
Л. — Незнайкин, эволюция техники знает любопытные примеры возврата к прошлому. Но чтобы как-то скрасить возникшее грустное впечатление, я познакомлю тебя с современным прибором — диодом Зенера (стабилитроном).
Н. — Раз современный, значит полупроводниковый.
Л. — Твое заключение правильно, хотя и пришел ты к нему совершенно нелогичным путем. Диод Зенера представляет собой плоскостной кремниевый диод, который при подаче положительного напряжения смешения ведет себя, как все диоды из порядочной семьи: он пропускает ток при минимальном падении напряжения на диоде около 0,7 в, которое почти не зависит от проходящего по нему тока. При подаче напряжения смещения обратного знака, т. е. отрицательного, наш новый знакомый запирается, как и все другие диоды, но в отличие от них при достижении обратным напряжением некоторой величины U з ,именуемой «напряжением Зенера», обратный ток начинает очень быстро возрастать без существенного увеличения напряжения на выводах диода.
Н. — Это своего рода пробой?
Л. — О, нет! Это совсем другое явление: в диоде не возникает никаких повреждений, если только не превысили максимально допустимого относительно большого значения тока. Напряжения Зенера могут заключаться в пределах от 3 до 200 в. При этом наилучшими считаются диоды с напряжением Зенера 8 в.
Н. — Очень занятно, но какое отношение имеет этот полупроводниковый прибор к усилителям?
Л. — Незнайкин, ты просто лишился воображения. Включи такой диод между катодом и корпусом усилителя (рис. 41). Катод будет иметь положительный и почти постоянный потенциал, потому что напряжение на выводах диода Зенера практически не зависит от проходящего по диоду тока, т. е. от анодного тока. У тебя отпадает надобность в конденсаторе, а следовательно, исчезнут и низкочастотные искажения.
Читать дальше