Знание-сила 2006 № 09 (951)

Здесь есть возможность читать онлайн «Знание-сила 2006 № 09 (951)» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2006, Жанр: sci_popular, periodic, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Знание-сила 2006 № 09 (951): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Знание-сила 2006 № 09 (951)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Ежемесячный научно-популярный и научно-художественный журнал

Знание-сила 2006 № 09 (951) — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Знание-сила 2006 № 09 (951)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Есть, конечно, еще тепловое излучение пыли, которой гораздо больше, чем примесных молекул, — ее массовая доля в межзвездной среде составляет примерно 1%. Но оно не особенно информативно, так как по наблюдениям теплового излучения в ограниченном диапазоне частот можно определить только плотность вещества, сделав к тому же какое-то предположение о его температуре. Исследование же спектральных линий примесных молекул позволяет определить не только плотность и температуру, но и скорость движения газа (правда, только по лучу зрения).

Но вот беда — молекул этих очень мало! Самая обильная после водорода молекула — оксид углерода СО: одна штука на 10000 молекул Н 2. Других молекул и того меньше. Говоря образно, вместо самих облаков молекулярного водорода мы видим их призраки, туманные очертания, нарисованные излучением молекул, которые в большинстве своем слишком малочисленны, чтобы играть в жизни облака сколько-нибудь существенную роль.

К тому же низкое содержание примесных молекул — не единственная проблема. Та же молекула СО, например, несмотря на малое присутствие, видна очень хорошо, и нет ни одного молекулярного облака, в котором она не была бы обнаружена. Вопрос в том, насколько хорошо эти молекулы перемешаны с молекулярным водородом. Допустим, мы построили карту молекулярного облака в излучении аммиака и увидели на этой карте особенно яркое пятно. Что это означает? Что мы наткнулись на невидимое телескопу плотное облако или там просто по каким-то причинам повышено содержание молекул аммиака?

Ответить на этот вопрос должны астрохимические модели, разработка которых ведется в нескольких астрономических институтах мира, в том числе в Московском институте астрономии РАН. Конечно, в идеале такие модели должны описывать, как меняется молекулярный состав межзвездной среды на всем протяжении ее эволюции — от разреженного межзвездного газа до протопланетного диска. Иными словами, заложив в модель известный из наблюдений исходный атомарный состав, мы в итоге должны получить содержание различных молекул в кометных ядрах, которое также известно из наблюдений. Но пока до создания такой всеобъемлющей модели очень далеко, так что поле для работы еще остается!

Утверждение о том, что молекулы не играют существенной роли в жизни плотных облаков, нуждается в двух уточнениях. Во-первых, наблюдаемое нами спектральное излучение — это не просто поток информации об условиях в облаке. Это еще и уносимая из облака энергия. Когда в одной молекуле сочетаются эффективность излучения и относительно высокое содержание, она вносит большой вклад в энергетический баланс облака.

Во-вторых, с точки зрения движения межзвездного вещества, важны молекулярные ионы, которые определяют, насколько сильно это вещество взаимодействует с галактическим магнитным полем. Когда мы говорим об ионизованном газе, в голову приходят такие слова, как "плазма", "ионизующие излучения" и прочая терминология атомного взрыва. Но в темных облаках нет ни ионизующих излучений, ни высоких температур, поэтому степень ионизации в них зависит от содержания ионизованных молекул, а это содержание в свою очередь определяется химическими реакциями.

Пыль как катализатор Отсутствие легко наблюдаемых линий не единственная - фото 80
Пыль как катализатор

Отсутствие легко наблюдаемых линий — не единственная проблема космического молекулярного водорода. Другая его загадка, которая теперь вроде бы решена, состоит в механизме формирования этой молекулы. Молекулярные облака образуются в результате сжатия межзвездного газа, водород в котором находится исключительно в виде атомов или ионов. Объединить два атома водорода в молекулу не так-то просто: она образуется с выделением примерно 4,5 электровольта энергии, которую нужно куда-то девать. Решить эту проблему могли бы трехчастичные столкновения — два атома объединяются в молекулу, а третий уносит избыточную энергию. Но в условиях низкой космической плотности трехчастичные столкновения происходят исключительно редко и начинают играть важную роль лишь в самых плотных областях протопланетных дисков.

В 1972 году известный американский астрофизик Юджин Солпитер предположил, что роль третьего тела в образовании молекулы водорода играет пыль. Попав на поверхность пылинки, атом водорода беспорядочно перемещается по ней до тех пор, пока не столкнется с другим таким же атомом и не сольется в молекулу Н 2. Выделяющаяся при этом энергия уходит на нагрев пылинки и на отрыв молекулы водорода от ее поверхности. Но к пылинкам прилипают атомы не только водорода, но и других элементов. Странствуя по поверхности пылевых частиц, они тоже объединяются в молекулы — аммиака, воды, оксида углерода, — которые постепенно окружают пылинку "ледяной" коркой. В нее входят не только молекулы, образующиеся на пыли, но и примерзающие к ней молекулы из газа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Знание-сила 2006 № 09 (951)»

Представляем Вашему вниманию похожие книги на «Знание-сила 2006 № 09 (951)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Журнал «Знание-сила» - Знание-сила, 2009 № 01 (979)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 06(840)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1998 № 06(852)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание - сила, 1998 № 05(851)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 04 (850)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 07 (841)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила 1997 № 09 (843)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 08 (842)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1997 № 10 (844)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 08 (854)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 2000 № 05-06 (875,876)
Журнал «Знание-сила»
Журнал «Знание-сила» - Знание-сила, 1998 № 07 (853)
Журнал «Знание-сила»
Отзывы о книге «Знание-сила 2006 № 09 (951)»

Обсуждение, отзывы о книге «Знание-сила 2006 № 09 (951)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x