optim
Здесь есть возможность читать онлайн «optim» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:optim
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
optim: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «optim»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
optim — читать онлайн бесплатно полную книгу (весь текст) целиком
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «optim», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Оптимистических прогнозов. Таких, которые связаны с целью, поставленной обществом, делающей деятельность общества целесообразной. Обладающих определенными коэффициентами корреляции с целью, позволяющими выбрать наиболее приближающийся к цели оптимальный прогноз. Но тогда и сама цель должна обладать некоторым метрическим коэффициентом. И, более того, оптимизм, уверенность в достижении цели, тогда обладает метрическим коэффициентом, вероятностью реализации цели.
Здесь — небольшое отступление от проблем метрики экономических прогнозов. Возможно ли, вообще говоря, выразить эмоцию (а оптимизм, какой бы гносеологический, научно-прогнозный, экономический и эконометрический смысл мы ему ни придавали, остается эмоцией), возможно ли ее выразить количественными показателями? Нет ли здесь чего-то от Сальери —- причем к алгебре сводится даже не музыка, а то, что выражается музыкой и иначе, например словами, и не может быть выражено?
У Сент-Экзюпери есть одно очень интересное замечание, вложенное в уста Маленького принца. Для ребенка интересы взрослых кажутся странными: взрослые интересуются количественными определениями, им нужно знать, сколько человеку лет, сколько он зарабатывает, а в какие игры он любит играть — это им безразлично. Наука, и не только наука, требует некоторого приближения к «детским» интересам. Об этом говорил Эйнштейн в отношении науки, а в других отношениях — евангелисты, вложившие в уста своего героя формулу: «... ежели не будете, как дети.. .»Но дети, вслед за Алисой в стране чудес, вовсе не против счета; только этот счет должен быть парадоксальным. Именно такой переход от традиционных математических соотношений к парадоксальным и был реализован в теории, которую Эйнштейн считал результатом «детских» интересов (он говорил, что пришел к теории относительности потому, что сохранил Детский интерес к фундаментальным проблемам до такого возраста, когда мог кое-что сделать для их решения).
Переход к парадоксальным неэвклидовым соотношениям от традиционных эвклидовых соотношений, рассматриваемый как физический переход, изменение метрики, неэвклидовый характер метрики, отождествленный с гравитационным полем, лежит в основе общей теории относительности. Такой переход не был растворением музыки в алгебре, он был скорее превращением алгебры в музыку, конечно, в несколько переносном смысле, аналогичном кеплеровой «музыке сфер».
Эмоциональное содержание оптимизма неотделимо от его метрического выражения. Чувство уверенности в грядущей реализации цели невозможно без количественного расчета и, поскольку речь идет о структуре производства, без метрики.
Но здесь нас подстерегает следующая трудность. Метрика — все методы определения расстояний по разности координат, по-видимому, легко может быть введена, когда речь идет о событиях, которые можно представить в виде точек некоторого абстрактного га-мерного пространства.
Читатель помнит: в главе «„Знаю как“ и „знаю где“» уже было введено га-мерное пространство экономических структур и (га+1) -мерное пространство динамики этих структур. Все же следует о них напомнить. Если речь идет, например, о пятидесяти отраслях (га = 50), то точка, соответствующая данной структуре,— это точка 50-мерного пространства структур, определенная 50 координатами, из которых каждая измеряет, например, вложения в одну из отраслей или продукцию отрасли. Переход от одной структуры к другой измеряется вектором, соединяющим две такие точки. Структурные изменения, вызванные научными и техническими открытиями,— основной экономический эффект, который необходимо измерить, чтобы узнать, какая динамика структуры производства является оптимальной для достижения цели, для того чтобы производительность труда и ее производные — скорость и ускорение ее уровня — были в целом наибольшими. Из таких векторов складывается кривая динамики структуры (уже не в 50-мерном, вообще не в тг-мерном, а в (га + 1) -мерном пространстве: мы вводим помимо п структурных координат (п + 1)-е измерение, время). Такая кривая — мировая линия структуры — должна давать наибольшее значение фундаментального индекса Q =/(Р, Р\ Р ").
Можно предвидеть дальнейшее направление этой кривой, если предположить, что кривизна мировой линии остается неизменной. И даже если она меняется, если возникают иные соотношения между скоростями отдельных отраслей, иные динамические балансы, можно определить результирующее искривление мировой линии, предвидеть дальнейшую эволюцию структуры. Но такая возможность сохраняется, когда изменения в темпах отдельных отраслей вызваны техническими открытиями, приведшими к ускоренному расширению той или иной отрасли. Прогнозы такого расширения мы назвали прогнозами рассудка. А прогнозы разума? В этих более радикальных прогнозах меняется сама зависимость экономической динамики от приращений координат, от изменений структуры. Меняется формула, связывающая каждое бесконечно малое приращение вектора в (п +1 )-пространстве с бесконечно малыми приращениями координат. Такое изменение метрики может быть представлено как искривление уже не мировой линии в (тг + 1) -пространстве, а как искривление самого этого пространства.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «optim»
Представляем Вашему вниманию похожие книги на «optim» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «optim» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.