Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Здесь есть возможность читать онлайн «Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, ISBN: 2019, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Первой ошибкой Мидоу было предположение, что случаи синдрома внезапной детской смерти являются полностью независимыми событиями. Эта ложная посылка позволила ему при расчете вероятности того, что смерть двух детей в одной семье будет вызвана СВДС, просто перемножить число 8543 на самое себя. В результате он получил, что вероятность такого события составит примерно 1 на каждые 73 миллиона удачных родов. Пытаясь обосновать свои предположения, он даже заявил: «Нет никаких доказательств того, что “смерти в колыбели” происходят в семьях серийно, зато серийному жестокому обращению с детьми доказательств множество». С этой цифрой на руках он предположил, что при уровне рождаемости в Великобритании, составляющем около 700 тысяч человек в год, две подряд «смерти в колыбели» можно было бы ожидать примерно раз в 100 лет.

Его допущение было исключительно некорректным. Известно много факторов повышения риска СВДС. В их число входят курение, преждевременные роды и даже сон в одной постели с родителями. В 2001 году исследователи Манчестерского университета выделили генетические маркеры, связанные с регулированием иммунной системы, которые также повышают риск СВДС [92] Summers, A. M., Summers, C. W., Drucker, D. B., Hajeer, A. H., Barson, A., & Hutchinson, I. V. (2000). Association of IL-10 genotype with sudden infant death syndrome. Human Immunology, 61 (12), 1270–73. https://doi.org/10.1016/S0198–8859 (00) 00183-X . С тех пор обнаружили множество других генетических факторов, также увеличивающих вероятность СВДС [93] Brownstein, C. A., Poduri, A., Goldstein, R. D., & Holm, I. A. (2018). The genetics of Sudden Infant Death Syndrome. In SIDS: Sudden Infant and Early Childhood Death: The Past, the Present and the Future. Dashash, M., Pravica, V., Hutchinson, I. V., Barson, A. J., & Drucker, D. B. (2006). Association of Sudden Infant Death Syndrome with VEGF and IL-6 Gene polymorphisms. Human Immunology, 67 (8), 627–33. https://doi.org/10.1016/J.HUMIMM.2006.05.002 . У родных братьев и сестер много общих генов – соответственно, риск развития СВДС у них выше. Если от СВДС умирает один ребенок, то вполне вероятно, что в семье действуют какие-то сопутствующие факторы риска. Следовательно, вероятность второй смерти в такой семье будет выше, чем в среднем по населению. В действительности считается, что в Великобритании ежегодно происходит хотя бы один случай СВДС у второго ребенка.

Рис 9 Древо решений для поиска вероятности выбора черных или белых шариков - фото 13

Рис. 9. Древо решений для поиска вероятности выбора черных или белых шариков. Для вычисления вероятности выбора черного или белого шарика при каждой попытке следуйте за соответствующими ветвями древа и умножайте вероятности на каждом шаге. Так, вероятность вытащить черный шарик с первой попытки составляет 1/100. При второй попытке мы выбираем из того же мешка, который мы выбрали при первой попытке. Вероятности каждой комбинации из двух вариантов показаны справа от пунктирной линии

Давайте смоделируем ситуацию, в которой мы сможем вычислить аналог вероятности смерти от СВДС. Возьмем десять мешочков с мраморными шариками. В девяти таких мешочках по десять белых шариков. В десятом же – девять белых и один черный. Эти стартовые условия представлены слева на рис. 9. На первом шаге вы выбираете произвольный мешок, а в нем – произвольный шарик. Поскольку шариков всего 100 и выбор любого из них одинаково возможен, вероятность выбора черного шарика на первом шаге составляет 1 из 100. На втором шаге вы возвращаете шарик обратно в тот же мешочек и вытаскиваете из него же еще один, игнорируя остальные мешочки. Если на первом шаге вы вытянули черный шарик, то вы знаете, что и во второй раз выбираете из набора, в котором этот шарик точно есть. Это значительно повышает вероятность выбора черного шарика – до 1 из 10, а не 1 из 100. В этом сценарии выбор двух черных шариков подряд (с вероятностью 1 к 1000) намного более вероятен, чем при простом перемножении исходной вероятности выбора одного черного шарика на саму себя (что даст вероятность удачного исхода в 1 к 10 000). В случае с вероятностью смерти второго ребенка от СВДС, если первый умер от этого синдрома, математика аналогична – вероятность растет.

При реальном расчете угрозы СВДС факторы риска для каждой семьи не выбираются случайным образом из всего их многообразия; они уже заданы заранее – можно утверждать, что с самого начала вы либо выбираете из мешочка с черным шариком в нем, либо из другого, в котором черного шарика заведомо нет. Эта альтернативная интерпретация проиллюстрирована в виде двух деревьев принятия решений на рис. 10. Если вам достался мешочек с черным шариком в обоих случаях, то вероятность выбора двух черных шариков возрастает до 1 к 100. Таким образом очевидно, что простое перемножение общепопуляционного фактора фонового риска развития СВДС на самого себя при вычислении вероятности развития СВДС для конкретного случая – некорректный прием.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Представляем Вашему вниманию похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Кит Маккарти - Тихий сон смерти
Кит Маккарти
Отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Обсуждение, отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x