Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь

Здесь есть возможность читать онлайн «Кит Йейтс - Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2019, ISBN: 2019, Жанр: Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Многие из нас боятся математики и не любят ее. Можно сказать даже, ненавидят. А зря.
Математические истории Кита Йейтса наглядно демонстрируют, как математика наполняет нашу жизнь и управляет ею.
Каждая из глав посвящена одному математическому принципу, например теории вероятности, и демонстрирует, как эта концепция реализуется в повседневной жизни.
Вы узнаете о несправедливых судебных решениях, основанных на математических ошибках; о тянущихся последствиях катастрофы в Чернобыле; о том, как манипулируют статистикой и предотвращают эпидемии. И все это благодаря королеве наук.
Доступность подачи материала, отсутствие сложных математических формул, наглядная демонстрация важности математики в нашей жизни – вот главные принципы книги.

Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Математические выкладки Бертильона были настолько туманны, что ни команда защиты Дрейфуса, ни присутствующий в суде правительственный комиссар не поняли ни одного из его аргументов. Скорее всего, судьи пребывали в таком же замешательстве, но псевдоматематическая риторика настолько их запугала, что они не решились ничего возразить. Лишь Анри Пуанкаре, один из самых выдающихся математиков XIX века (с ним мы снова встретимся в шестой главе, когда столкнемся с его «задачей на миллион долларов»), удалось разобраться в хитросплетениях бертильоновских формул. Через десять с лишним лет после того, как Дрейфусу был вынесен приговор, Пуанкаре привлекли к делу, и он быстро обнаружил ошибку в расчетах Бертильона. Вместо того чтобы вычислить вероятность четырех совпадений в списке из 26 начал и окончаний в тринадцати повторяющихся словах, Бертильон вычислил вероятность четырех совпадений в четырех словах, что, естественно, гораздо менее вероятно.

По аналогии представьте себе проверку результатов стрельбы по ростовым мишеням в тире. Следы десяти попаданий в голову или грудь мишени могут «подсказать», что огонь вел меткий стрелок. Однако те же десять попаданий по результатам серии в сто или – тем более – тысячу выстрелов производят уже совсем иное впечатление. То же самое было и с анализом Бертильона. Четыре совпадения из четырех вариантов действительно очень маловероятны, но в случае корректной выборки из 26 начал и концов слов, которые анализировал Бертильон, общее количество разных комбинаций составит уже 14 950 вариантов. Реальная вероятность тех четырех совпадений, которые выделил Бертильон, составляет примерно 18 к 100, что в 100 с лишним раз больше числа, которое он предъявил суду. Учитывая, что Бертильон с таким же успехом нашел бы пять, шесть, семь и более совпадений, пересчитанная вероятность нахождения четырех и более совпадений составит примерно восемь к десяти. Выходит, что найти совпадения, число которых Бертильон посчитал «необычным», можно с гораздо большей вероятностью, чем не найти их. Продемонстрировав ошибочность вычислений Бертильона и утверждая, что даже попытка применить теорию вероятности к такому вопросу была неправомерной, Пуанкаре смог опровергнуть некорректные результаты почерковедческого анализа и тем самым оправдать Дрейфуса [86] Jean Mawhin. (2005). Henri Poincare. A life in the service of science. Notices of the American Mathematical Society, 52 (9), 1036–44. . После четырех лет невыносимых страданий на острове Дьявола и еще семи лет жизни в позоре во Франции Дрейфус наконец был освобожден в 1906 году и повышен в звании до майора французской армии. Его честь была восстановлена, и он продолжил благородную службу своей стране на полях Первой мировой войны, отличившись на передовой в Вердене.

Дело Дрейфуса демонстрирует как силу математически подкрепленных аргументов, так и легкость, с которой ими можно злоупотреблять. Мы вернемся к этой теме несколько раз в следующих главах: люди склонны принимать математические формулировки на веру, с умным видом соглашаясь с ними и не требуя дальнейших объяснений из почтения к их мудрому автору. Флер тайны, окружающий многие математические выкладки, делает их порой загадочно непонятными и – зачастую незаслуженно – невероятно убедительными. Их очень редко пытаются оспорить. Математическая формула создает иллюзию достоверности (мы сталкивались с этим явлением в предыдущей главе, обсуждая причины, по которым люди принимают результаты медицинских тестов безоговорочно), обезоруживающую потенциальных скептиков. Но мы так и не извлекли уроков ни из дела Дрейфуса, ни и из многих других математических ошибок правосудия, накопившихся на протяжении всей истории. И в этом состоит трагедия – в результате невинные жертвы вновь и вновь попадают в тот же порочный круг.

Виновен, пока не доказано обратное?

Так же, как и в случае с медицинскими тестами, который мы рассматривали в прошлой главе, закон часто заставляет выбирать одно из двух: прав человек или нет; истина это или ложь; виновен подозреваемый или не виновен. Суды многих западных демократий придерживаются принципа презумпции невиновности – бремя доказывания должно лежать на обвинителе, а не на обвиняемом. От презумпции виновности отказались почти все страны, поскольку эта практика неизбежно производит больше ложноположительных и меньше ложноотрицательных результатов. Однако и сегодня в некоторых странах юридические практики склоняются скорее к презумпции виновности, чем невиновности. В японской системе уголовного правосудия, например, доля обвинительных приговоров составляет 99,9 %, причем большинство из них подтверждаются признанием вины [87] Ramseyer, J. M., & Rasmusen, E. B. (2001). Why is the Japanese conviction rate so high? The Journal of Legal Studies, 30 (1), 53–88. https://doi.org/10.1086/468111 . Для сравнения: в 2017–2018 годах в уголовном суде Великобритании доля обвинительных приговоров составляла 80 %. Высокая доля обвинительных приговоров в Японии впечатляет – как и эффективность полиции, ведь арестованный оказывается виновным в 999 с лишним случаях из 1000. Но насколько это вероятно?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Представляем Вашему вниманию похожие книги на «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Кит Маккарти - Тихий сон смерти
Кит Маккарти
Отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь»

Обсуждение, отзывы о книге «Математика жизни и смерти. 7 математических принципов, формирующих нашу жизнь» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x