Такую схему называют полным сумматором , ибо, какие бы значения ни принимались на входах p, q и r , 0 или 1, значения s и t всегда будут таковы, что s + 2 t (что в двоичной системе Лейбница соответствует s + 10 t ) будет равно сумме p + q + r , где s символизирует разряд единиц этой суммы, а t соответствует переходу во второй разряд (что в двоичной системе Лейбница соответствует разряду десятков).
Ниже приводится высказывание из программного выступления Гильберта по радио вплоть до заключения:
«Действительно, мы овладеем какой-либо естественно-научной теорией не раньше, чем сможем вычленить ее математическое ядро и полностью снять с него покров. Без математики совершенно невозможны современные астрономия и физика, которые находят свои теоретические решения именно в математике. Эти, а также другие ее приложения обеспечили математике высокую репутацию, которой она пользуется в обществе.
Несмотря на это, математики единодушно отвергают стремление считать приложения мерилом достоинств математики.
Гаусс говорит о колдовском очаровании, каковое сделало теорию чисел любимой наукой первых в истории математиков, не говоря уже о ее неисчерпаемом богатстве, в отношении которого эта часть математики возвышается над всеми остальными ее сферами.
Кронекер сравнивает специалистов по теории чисел с лотофагами, которые, отведав этой пищи, не могли уже от нее отказаться.
Великий математик Пуанкаре резко критикует Толстого, заявившего, что требование «науки ради науки» глупо и абсурдно. Достижения промышленности, например, никогда не увидели бы свет, если бы существовали одни только практики и если бы не было незаинтересованных чудаков.
Величие человеческого духа, сказал однажды выдающийся кенигсбергский математик Якоби, вот единственная цель всей науки».
Изначально Шредингер вывел уравнение для ψ с учетом специальной теории относительности Альберта Эйнштейна. Однако из-за того, что некоторые возможные решения показались Шредингеру слишком курьезными, он сформулировал уравнение, не оглядываясь на теорию относительности. С помощью этого упрощенного уравнения, названного по имени автора уравнением Шредингера, эксперты по квантовой механике смогли очень точно описать свойства атомов и молекул, ибо в этом контексте специальная теория относительности не играет практически никакой роли. Коллега Шредингера Поль Дирак воспользовался его идеей и переписал уравнение для ψ с учетом положений специальной теории относительности. Для тех решений, которые Шредингер отбросил как слишком экстравагантные, Дирак нашел вполне осмысленные физические интерпретации. Так, из уравнения Дирака вытекает, что для каждой элементарной частицы должна существовать противоположно заряженная античастица. Последующие эксперименты блестяще подтвердили теоретическое предсказание Дирака. Уравнение на ψ, учитывающее положения общей теории относительности Эйнштейна, правда, пока не выведено.
Согласно одной забавной легенде, один скептик как-то пожаловался Гильберту, что из его геометрии совершенно невозможно понять, что имеется в виду под словами «точки», «прямые» и «плоскости». В аксиомах эти понятия выглядят абсолютно пустыми словами, лишенными всякого наглядного смысла. «Совершенно верно, — будто бы ответил Гильберт коллеге, — о существе понятий в формальной математике речь не идет». Можно, по Гильберту, в его системе аксиом заменить слова «точки, прямые и плоскости» словами «столы, стулья и пивные кружки».
Вопрос о том, конечным или бесконечным является число нулей в десятичном представлении числа π, является отнюдь не праздным. Представим себе следующую конструкцию множества: первому нулю, найденному в десятичном представлении π, приписывают число 1 множества. Как только обнаруживается второй ноль, к образованному множеству добавляют ½. После нахождения третьего нуля в десятичном представлении числа π к множеству добавляют ⅓. Вообще говоря, в множество добавляют 1/ n , когда находят n нулей в десятичном представлении числа π. Вопрос о том, конечным или бесконечным является число нулей в десятичном представлении числа π, равнозначен, таким образом, вопросу о том, состоит ли наше множество из конечного или бесконечного числа элементов.
Этот вопрос имеет непосредственное отношение к аксиомам исчисления чисел с бесконечным десятичным представлением. Полученное нами множество состоит из положительных дробей и должно, согласно одной основополагающей аксиоме, обладать так называемой точной нижней границей, или нижней гранью. Под нижней гранью имеют в виду число x с бесконечным десятичным представлением, обладающее следующими двумя свойствами: с одной стороны, любая дробь множества не меньше чем x , а с другой стороны, для каждого y , большего, чем x , существует принадлежащая множеству дробь, меньшая чем y .
Читать дальше
Конец ознакомительного отрывка
Купить книгу