Рисунок 7.5. Рабочий континуум человек—машина
Выбирать свои первые цели для автоматизации нужно вдумчиво, поскольку успех или отсутствие успеха этого начального внедрения будет диктовать ваши последующие инициативы с ИИ. В своей работе с десятками начинаний с использованием ИИ мы увидели, что успешные попытки отвечают этим критериям.
• Часто повторяющиеся задачи. Найдите задачи, которые часто приходится выполнять, очень распространенные в вашей компании. Коротко говоря, поищите деятельность, которой многие люди занимаются каждый день. Это может быть обработка инвойсов, сверка документации, «отбор и упаковка», согласование заказов, новые ответы по телефону на одни и те же вопросы и так далее. Некоторые из этих задач уже и так заметно автоматизированы, но многие, по нашим наблюдениям, еще нет. Дайте себе честный ответ: эти области, и многие другие, автоматизированы настолько, насколько это возможно? И есть ли интеллектуальная составляющая в течение процесса? Любые объемные, часто повторяющиеся задачи – первые кандидаты на автоматизацию.
• Задачи, почти не требующие человеческого суждения. Роботы отлично считают, люди считают хуже. Напротив, люди больше способны к комплексным суждениям, в то время как ИИ и алгоритмы – нет. Поэтому работа, крепко висящая на деревьях решений (в противоположность амбивалентности, интуиции, инсайту, сложным суждениям) – сильный кандидат на автоматизацию. Машины способны на информированные результаты, однако принятие решений, основанных на нюансах, в обозримом будущем будет требовать человеческого участия. И напротив, любая работа, являющаяся в основном последовательностью шагов «если-это-то-это», должна быть автоматизирована.
• Задачи, требующие низких уровней эмпатии. Регистрация заказов, вынесение решений по заявлениям и сверка инвойсов – процессы, требующие аккуратности и скорости… но редко эмпатии. Если бот может существенно увеличить точность, систематичность или скорость, многие из нас смирятся с отменой фактора эмпатии. Уже сейчас внутри вашей организации есть много областей, в которых должна быть применена логика. Их нетрудно будет отыскать.
• Генерирование задач и работа с большими объемами данных. Любой процесс, связанный с потенциальной генерацией большого количества информации, особенно клиентской, должен быть автоматизирован с единственной целью сбора данных, вашего собственного сырьевого материала. Люди, даже если вы можете позволить себе иметь достаточное количество сотрудников, не справятся с объемами данных, когда становятся умными и подключается все больше и больше вещей. В качестве небольшого примера, представьте, что все уличное освещение в городе среднего размера умное и способно сообщать не только о собственном «здоровье» (например, о том, нужно ли их заменить), но могут также информировать о потоке транспортных средств. Объем данных, генерируемых в «решете» информации целого города, будет далеко за пределами человеческих способностей к управлению и обработке данных. В подобных сценариях автоматизация не заменит людей, а станет фундаментальным строительным блоком для создания новых сервисов и идей, которые, в свою очередь, создадут ценность. В своей организации стоит искать области, в которых процессы и потоки могут управляться сенсорами и данные от которых, прежде недоступные, могут генерироваться и администрироваться.
Определение целей для автоматизации покажет вашей команде четкий путь к успеху, однако серьезное препятствие к управлению переменами в вашей компании по-прежнему остается. Это ведет к нашему третьему правилу движения.
Пробиться сквозь «латунную стену»
Вы определили первоначальные цели для автоматизации, распространенные в отрасли и точно подходящие под пороговые уровни в 25%–25%. Все в компании увидят мудрость вашего решения и будут полностью поддерживать, правда? Неправда.
Мы выучили этот урок двадцать лет назад, во время вышеупомянутой волны реорганизации бизнес-процессов (РБП). Когда-то в 1990-х последователи Майкла Хаммера (Michael Hammer) заявляли: «Не автоматизируйте. Уничтожайте!» Эта мантра должна была помочь найти способ делать больше за меньший счет – гораздо меньший.
В теории РБП выглядела прекрасно. Однако практика в большинстве случаев провалилась (серьезно запачкав в процессе имя этого движения). Почему же? Слишком часто средние менеджеры, ответственные за выстраивание и внедрение инициатив по РБП, быстро осознавали, что реорганизуют с работы и самих себя. А дальше следовали политика и саботаж.
Читать дальше
Конец ознакомительного отрывка
Купить книгу