Смейл доказал одно из обобщений той самой гипотезы Пуанкаре для трехмерного пространства, которую позже доказал Григорий Перельман.
Слова «поверхность» и «многообразие» можно считать синонимами. Сфера и тор (поверхность бублика) – примеры многообразий. Размерность многообразия – это количество чисел, которые нужно задать, чтобы выделить на нем конкретную точку. Например, любая точка на обычной сфере однозначно определяется парой чисел – долготой и широтой, – поэтому говорят, что сфера двумерна (хотя и лежит в трехмерном пространстве); поверхность обычного бублика тоже двумерна. Представить себе многообразия с размерностями больше двух довольно трудно, но для понимания дальнейшего и не нужно.
В теории динамических систем слово «устойчивость» имеет разные значения, и в этом абзаце они немного перемешаны. Есть понятие устойчивости положения равновесия (так называемая устойчивость по Ляпунову). Пример с шариком в лунке и карандашом на острие – как раз про этот тип устойчивости. Причем, как справедливо отмечает автор, в одной и той же системе могут наблюдаться устойчивые и неустойчивые положения равновесия. Рассмотрим, например, качели, способные по своей конструкции совершить полный оборот. Пусть качели пусты, их никто не толкает и они неподвижны. Тогда они могут находиться в устойчивом положении равновесия (сиденье максимально близко к земле) и – теоретически – в неустойчивом (сиденье максимально далеко от земли). В отличие от устойчивости по Ляпунову, устойчивость «по Смейлу», более известная как структурная устойчивость, – это характеристика не отдельного состояния системы, а всей системы целиком. Возвращаясь к примеру с качелями: если немного изменить их конструкцию – например, сделать сиденье чуть шире или чуть уже либо слегка изогнуть поручни, – они будут вести себя примерно так же, как и раньше. У них по-прежнему будет два возможных положения равновесия, они по-прежнему могут колебаться или проворачиваться – даже если какие-то количественные характеристики их возможного движения изменятся, качественно все останется по-прежнему. В этом смысле система, описывающая качели, структурно устойчива. Понятие структурной устойчивости появилось в работе A. A. Андронова и Л. С. Понтрягина в 1937 году (там оно названо «грубостью»). Гипотеза, выдвинутая Смейлом, состояла в том, что хаос не может наблюдаться в структурно устойчивых системах.
Smale S. «On How I Got Started».
Ван дер Поль описал свое исследование в публикации: Nature. Vol. P. 363–364.
Опять же имеется в виду структурная устойчивость, а не устойчивость конкретного положения равновесия.
Ibid.
Бескомпромиссно математическое объяснение Смейлом этой работы см.: «Differentiable Dynamical Systems» // Bulletin of the American Mathematical Society. P. 747–817 (а также: The Mathematics of Time. P. 1-82).
Рёсслер.
Йорк.
Важнее обратное: даже точки, которые исходно находились очень близко друг к другу, из-за постоянных растяжений со временем окажутся на заметном расстоянии.
Гукенхеймер, Абрахам.
Абрахам.
Маркус, Инджерсолл, Уильямc; Marcus P. S. «Coherent Vortical Features in a Turbulent Two-Dimensional Flow and the Great Red Spot of Jupiter». Paper presented at the 110th Meeting of the Acoustical Society of America, Nashville, Tennessee, 5 November 1985.
Updike J. «The Moons of Jupiter» // Facing Nature. New York: Knopf, P. 74.
Инджерсолл; см. также: Ingersoll A. P. «Order from Chaos: The Atmospheres of Jupiter and Saturn» // Planetary Report. Vol. № P. 8–11.
Маркус.
Маркус.
Мэй, Шаффер, Йорк, Гукенхеймер. Знаменитый обзор уроков Мэя по теории хаоса в биологии: «Simple Mathematical Models with Very Complicated Dynamics» // Nature. Vol. R 459–467; а также: «Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos» // Science. Vol. R 645–647; May R., Oster G. F. «Bifurcations and Dynamic Complexity in Simple Ecological Models» // The American Naturalist. Vol. R 573-Прекрасный обзор развития математического моделирования популяций еще до возникновения теории хаоса: Kingsland S. E. Modeling Nature: Episodes in the History of Population Ecology. Chicago: University of Chicago Press, 1985.
May R., Seger J. «Ideas in Ecology: Yesterday and Tomorrow», preprint. Princeton University. P. 25.
May R., Oster G. F. «Bifurcations and Dynamic Complexity in Simple Ecological Models» // The American Naturalist. Vol. R 573.
Мэй.
Удобства ради в данной весьма абстрактной модели численность особей выражается дробным числом, которое больше нуля, но меньше единицы, причем нуль обозначает вымирание, а единица – максимально возможную численность популяции, скажем, рыб в пруду. Итак, начнем: произвольно выберем значение параметра r , например 2,7, и начальную численность популяции, к примеру 0,Отнимем от единицы 0,02, получив 0,98, и умножим 0,98 на 0,02, получив в итоге 0,Теперь умножим результат на 2,7 и получим 0,Крошечная начальная численность популяции выросла более чем в два раза. Повторим процедуру, используя только что полученную численность особей в качестве исходных данных, и получим 0,С простым, дешевым калькулятором, в который можно ввести определенную программу, для получения такого результата нужно лишь нажимать одну и ту же кнопку снова и снова. Популяция увеличивается до 0,3159, затем до 0,5835, потом до 0,6562 – рост численности замедляется. Далее, по мере того как смертность от нехватки пропитания «догоняет» воспроизводство, численность будет равняться 0,6092, 0,6428, 0,6199, 0,6362, 0,Значения в числовом ряду скачут: то возрастают, то уменьшаются. Впрочем, заканчивается он строго определенным значением: 0,6328, 0,6273, 0,6312, 0,6285, 0,6304, 0,6291, 0,6300, 0,6294, 0,6299, 0,6295, 0,6297, 0,6296, 0,6297, 0,6296, 0,6296, 0,6296, 0,6296, 0,6296, 0,6296, 0,Это явный успех! Когда все расчеты выполнялись вручную и даже во времена механических счетных машинок с ручным приводом, дальше подобных вычислений дело особенно не шло. – Прим. автора.
Читать дальше
Конец ознакомительного отрывка
Купить книгу