Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как мы можем быть уверены, что парадоксы не будут и дальше распространяться, подобно вирусам? Источниками противоречий служили бесконечность, самоотносимость и не вполне точно определенные понятия. Однако не все высказывания, которые ссылаются сами на себя, порождают парадоксы, полностью исключить бесконечность из математики нельзя, и у нас нет инструмента, который безошибочно укажет на недостаточно четко определенные понятия. В следующей главе мы расскажем о стратегии, с помощью которой наиболее выдающийся математик своего поколения, Давид Гильберт, хотел полностью избавиться от парадоксов.

Глава 3

Программа Гильберта

Бог существует потому, что математика непротиворечива, а дьявол существует потому, что мы не можем доказать это.

Приписывается Андре Вейлю

«Кто из нас не обрадовался бы, если бы мог поднять завесу, за которой скрывается будущее, окинув взором перспективы нашей науки и ее секреты?»

Начинался новый век, и тысячи посетителей Всемирной выставки в Париже наводнили ее павильоны, озаряемые ярким августовским солнцем. В это же время в Париже проходил II Международный математический конгресс, и Давид Гильберт выступал в амфитеатре Сорбонны на заседании своих секций. Его целью было впервые рассказать не о том, что уже доказано, а о том, что еще предстоит открыть.

Никто не сомневался, что Гильберт был лучшим математиком своего поколения, однако его выступление было отодвинуто на второй план — наряду с исследованиями, посвященными древним японским геометрам, и предложениями ввести во всех странах единый научный язык. Разумеется, ученого пригласили выступить и на общем заседании конгресса в день открытия, но он слишком долго не мог определиться с темой выступления, и организаторам пришлось исключить его доклад из программы.

Наблюдая, как Гильберт в своих очках поднимался на кафедру, зрители спрашивали друг у друга, о чем же он все это время размышлял.

«История учит, что развитие науки протекает непрерывно. Мы знаем, что каждый век имеет свои проблемы, которые последующая эпоха или решает, или отодвигает в сторону как неразрешимые, чтобы заменить их новыми». Гильберт был убежден, что единственным двигателем прогресса в математике является решение задач. Поэтому, обращаясь к собравшимся в зале Сорбонны, лидер Гёттингенской математической школы подчеркивал, что решить задачу означает сформулировать рассуждения, с помощью которых, исходя из конечного числа гипотез, выраженных точными терминами, можно прийти к выводу за конечное число этапов посредством строгих логических правил вывода. Чтобы проиллюстрировать свои идеи, Гильберт выбрал двадцать три задачи, которые, по его мнению, должны были указать направления исследований математикам XX века, однако ему не хватило времени, чтобы прокомментировать все эти задачи. Благодаря свидетельствам его друзей — математиков Германа Минковского(1864–1909) и Адольфа Гурвица(1859–1919) — нам известно, каких трудов стоило Гильберту выбрать задачи, упомянутые в парижском докладе. И однако он ни на секунду не усомнился в своем выборе. Вторая задача из списка звучала, казалось, совершенно невинно: являются ли аксиомы арифметики непротиворечивыми?

* * *

ЗАДАЧА О КАРДИНАЛЬНЫХ ЧИСЛАХ МНОЖЕСТВА

В предыдущей главе вы увидели, что одним из величайших открытий Георга Кантора было доказательство того, что не все бесконечные множества имеют одинаковый размер. И действительно, его диагональный метод позволил показать, что натуральных чисел меньше, чем бесконечных последовательностей, состоящих из нулей и единиц. В первой задаче из списка Гильберта требовалось дать положительный или отрицательный ответ на вопрос о том, существует ли такое множество, кардинальное число которого будет больше, чем кардинальное число множества натуральных чисел, но меньше, чем кардинальное число множества последовательностей из нулей и единиц. Благодаря трудам Курта Гёделя (1940) и математика Пола Коэна из Стэнфордского университета (1963) сегодня нам известно, что если исходить из привычной системы аксиом теории множеств, на этот вопрос нельзя дать ни положительного, ни отрицательного ответа.

* * *

Доклад Гильберта прозвучал 8 августа 1900 года. К этому времени в теории множеств уже появились первые парадоксы, однако Рассел открыл противоречие, которое заставило всех забить тревогу, лишь годом позже. Очень быстро парадокс о множестве всех множеств, которые не принадлежат сами себе, встревожил европейские математические круги: в Англии Уайтхед предсказал конец «счастливым и спокойным будням», в Германии Фреге добавил к своим «Основам арифметики» пессимистичное предисловие, во Франции Анри Пуанкаре, враг математической логики, победно воскликнул: «Формальная логика не бесплодна: она порождает противоречия». Если от кого и ожидали ответа, то это был Давид Гильберт — его многие считали новым Евклидом благодаря опубликованной им в 1899 году системе аксиом геометрии, которая ознаменовала начало современного подхода к этой дисциплине. Тем не менее Гильберт не потрудился дать меткий ответ, который вошел бы в историю, подобно изречениям Уайтхеда, Фреге и Пуанкаре: он просто точно знал, как можно избавить математику от парадоксов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x