Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы

Здесь есть возможность читать онлайн «Хавьер Фресан - Том. 22. Сон разума. Математическая логика и ее парадоксы» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том. 22. Сон разума. Математическая логика и ее парадоксы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том. 22. Сон разума. Математическая логика и ее парадоксы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.

Том. 22. Сон разума. Математическая логика и ее парадоксы — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том. 22. Сон разума. Математическая логика и ее парадоксы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 2 Объединение двух множеств соответствующее дизъюнкции Р V Q Рис - фото 34

Рис. 2. Объединение двух множеств, соответствующее дизъюнкции Р V Q .

Рис 3 Дополнение множества соответствующее отрицанию Р Диаграммы - фото 35

Рис. 3. Дополнение множества, соответствующее отрицанию ¬ Р .

Диаграммы Венна, на которых представлены операции пересечения (рис. 1), объединения (рис. 2) и дополнения (рис. 3) множеств.

Сделав замечание о том, как представляются выражение «для всех» и конъюнкция высказываний (логическое «и»), рассмотрим, как переводятся в формальную систему арифметики некоторые аксиомы Пеано. Первая аксиома Пеано звучит так: «Ноль есть натуральное число». Эта аксиома не требует перевода, так как мы включили символ 0 в созданный нами язык. Перейдем ко второй аксиоме: «Каждое натуральное число имеет число, следующее за ним». В этой аксиоме фигурируют две переменные: рассматриваемое натуральное число, которое мы будем обозначать через х , и следующее за ним, которое будем обозначать через у . Вспомним, что число, следующее за данным, записывается с помощью буквы s , которая ставится перед этим числом, и выражается формулой у = sx , то есть « у равно числу, следующему за х ». Следующий шаг заключается в том, что высказывание «каждое натуральное число» равносильно высказыванию «для всех натуральных чисел», и в этом контексте слово «имеет» означает «существует». Таким образом, аксиома принимает вид: «Для всякого натурального числа х существует натуральное число у такое, что у = sx ». Если бы мы могли использовать символ , то на этом можно было бы остановиться: аксиома записывалась бы как x картинка 36 y ( y = sx ) — скобки мы использовали, чтобы выделить свойство, которым обладают числа х и у . Так как этот символ применить нельзя, нужно выполнить еще одно действие: так как «для всякого натурального числа х существует натуральное число у такое, что у = sx » равносильно «не существует натурального числа х такого, что для него не существует натурального числа у такого, что у = sx », и вторая аксиома Пеано будет записываться так: ¬ х у ( у = sx ). После столь подробных объяснений читатель может самостоятельно убедиться в том, что третья аксиома Пеано, «0 не следует ни за каким натуральным числом», соответствует выражению ¬ х ( sx = 0).

* * *

ЧЕТВЕРТАЯ АКСИОМА ПЕАНО

Переведем в формальную систему арифметики четвертую аксиому Пеано, которая гласит: «за двумя различными натуральными числами следуют различные натуральные числа». Сначала определим переменные, используемые в высказывании: это два натуральных числа, хи у. Аксиома гласит, что не могут одновременно выполняться два следующих условия: х и уразличны, следующие за ними числа совпадают. Иными словами, не существует чисел х и утаких, что:

1) хотличается от у;

2) число, следующее за х, равно числу, следующему за у.

Если бы символ конъюнкции был частью определенного нами языка, то эта аксиома записывалась бы так:

Так как использовать символ конъюнкции нельзя нужно переписать это выражение - фото 37

Так как использовать символ конъюнкции нельзя, нужно переписать это выражение, применяя функции отрицания и дизъюнкции. С учетом того, что отрицание отрицания высказывания равносильно исходному высказыванию, четвертая аксиома Пеано примет вид:

От языка к метаязыку Благодаря описанному выше процессу арифметика была - фото 38

* * *

От языка — к метаязыку

Благодаря описанному выше процессу арифметика была очищена от значений и сведена к формальному каркасу. Теперь ее аксиомы являются исключительно последовательностями абстрактных символов, а доказательства превратились в упражнения по комбинаторике. Однако мы по-прежнему можем сформулировать высказывания со смыслом: например, мы можем сказать «вторая аксиома Пеано длиннее третьей», «квантор существования упоминается во второй аксиоме Пеано два раза» или «формула ¬(0 = 1) является теоремой арифметики». Важно, что здесь речь идет уже не о формализованных высказываниях языка L , а о фразах на русском языке, которые относятся к формулам L . В этих фразах говорится уже не о числах, а о высказываниях о числах, таким образом, они выходят за пределы математики в область метаматематики. Этот переход подобен ситуации, когда один из героев романа начинает писать свой роман. Подобно тому, как литература порой превращается в металитературу, математика может превратиться в метаматематику.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Представляем Вашему вниманию похожие книги на «Том. 22. Сон разума. Математическая логика и ее парадоксы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы»

Обсуждение, отзывы о книге «Том. 22. Сон разума. Математическая логика и ее парадоксы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x